Тарифы Услуги Сим-карты

Помехи и искажения в каналах электросвязи. Основные виды помех и искажений в системах связи

Помеха – это любое воздействие, накладывающееся на полезный сигнал и затрудняющее его прием. Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам.

В проводных каналах связи основным видом помех являются импульсные шумы и прерывная связь. Появление импульсных помех часто связано с автоматической коммутацией и с перекрестными наводками. Прерывание связи есть явление, при котором сигнал в линии резко затухает или совсем исчезает.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Этот вид помех особенно сказывается в диапазоне ультракоротких волн. В этом диапазоне имеют значение и космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах.

Классификацию помех можно провести по следующим признакам:

— по происхождению (месту возникновения);

— по физическим свойствам;

— по характеру воздействия на сигнал.

К помехам по происхождению в первую очередь относятся внутренние шумы аппаратуры (тепловые шумы) обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Случайное тепловое движение носителей заряда в любом проводнике вызывает случайную разность потенциалов на его концах. Среднее значение напряжения равно нулю, а переменная составляющая проявляется как шум. Квадрат эффективного напряжения теплового шума определяется известной формулой Найквиста

где Т- абсолютная температура, которую имеет сопротивление R;

F — полоса частот; k =1,37*10 (-23) Вт.сек/град- постоянная Больцмана.

К помехам по происхождению, во вторую очередь, относятся помехи от посторонних источников, находящихся вне каналов связи:

— атмосферные помехи (громовые разряды, полярное сияние, и др.), обусловленные электрическими процессами в атмосфере;

— индустриальные помехи, возникающие в электрических цепях электроустановок (электротранспорт, электрические двигатели, системы зажигания двигателей, медицинские установки и другие.);

— помехи от посторонних станций и каналов, возникающих от различных нарушений режима их работы и свойств каналов;

— космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах, галактиках и других внеземных объектах.

По физическим свойствам помех различают:

— Флуктуационные помехи;

— Сосредоточеные помехи.

Флуктуационные помехи . Среди аддитивных помех особое место занимает флуктационная помеха, которая является случайным процессом с нормальным распределением (гауссов процесс). Этот вид помех практически имеет место во всех реальных каналах.

Электрическую структуру флуктуационной помехи можно представить себе как последовательность бесконечно коротких импульсов, имеющих случайную амплитуду и следующих друг за другом через случайные промежутки времени. При этом импульсы появляются один за другим настолько часто, что переходные явления в приемнике от отдельных импульсов накладываются, образуя случайный непрерывный процесс.

Так, источником шума в электрических цепях могут быть флуктуации тока, обусловленные дискретной природой носителей заряда (электронов, ионов). Дискретная природа электрического тока проявляется в электронных лампах и полупроводниковых приборах в виде дробового эффекта.

Наиболее распространенной причиной шума являются флуктуации, обусловленные тепловым движением.

Длительность импульсов, составляющих флуктуационную помеху, очень мала, поэтому спектральная плотность помехи постоянна вплоть до очень высоких частот.

К сосредоточенным по времени (импульсным) помехам относят помехи в виде одиночных импульсов, следующих один за другим через такие большие промежутки времени, что переходные явления в радиоприемнике от одного импульса успевают практически затухнуть к моменту прихода следующего импульса.

Сосредоточенные по спектру помехи . К этому виду помех принято относить сигналы посторонних радиостанций, излучения генераторов высокой частоты различного назначения и т. п. В отличие от флуктационных и импульсных помех, спектр которых заполняет полосу частот приёмника, ширина спектра сосредоточенной помехи в большинстве случаев меньше полосы пропускания приёмника. В диапазоне коротких волн этот вид помех является основным, определяющим помехоустойчивость связи.

По характеру воздействия на сигнал различают:

— аддитивные помехи;

— мультипликативные помехи.

Аддитивной называется помеха, мгновенные значения которой складываются с мгновенными значениями сигнала. Мешающее воздействие аддитивной помехи определяется суммированием с полезным сигналом. Аддитивные помехи воздействует на приемное устройство независимо от сигнала и имеют место даже тогда, когда на входе приемника отсутствует сигнал.

Мультипликативной называется помеха, мгновенные значения которой перемножаются с мгновенными значениями сигнала. Мешающее действие мультипликативных помех проявляется в виде изменения параметров полезного сигнала, в основном амплитуды. В реальных каналах электросвязи обычно имеют место не одна, а совокупность помех.

Под искажениями понимают такие изменения форм сигнала, которые обусловлены известными свойствами цепей и устройств, по которым проходит сигнал. Главная причина искажений сигнала – переходные процессы в линии связи, цепях передатчика и приемника. При этом различают искажения: линейные и нелинейные возникающие в соответствующих линейных и нелинейных цепях. В общем случае искажения отрицательно сказываются на качестве воспроизведения сообщений и не должны превышать установленных значений (норм).

При известных характеристиках канала связи форму сигнала на его выходе всегда можно рассчитать по методике, изложенной в теории линейных и нелинейных цепей. Дальнейшие изменения формы сигнала можно скомпенсировать корректирующими цепями или просто учесть при последующей обработке в приемнике. Это уже дело техники.

ДРУГОЕ ДЕЛО ПОМЕХИ — ОНИ заранее не известны и поэтому не могут быть устранены полностью.

Борьба с помехами — основная задача теории и техники связи. Любые теоретические и технические решения, о выполнении кодера или декодера, передатчика и приемника системы связи должны приниматься с учетом того, что в линии связи имеются помехи. При всем многообразии методов борьбы с помехами их можно свести к трем направлениям:

— подавление помех в месте их возникновения. Это достаточно эффективное и широко применяемое мероприятие, но не всегда приемлемо. Ведь существуют источники помех, на которые воздействовать нельзя (грозовые разряды, шумы Солнца и др.);

— уменьшение помех на путях проникновения в приемник;

— ослабление влияния помех на принимаемое сообщение в приемнике, демодуляторе, декодере. Именно это направление для нас является предметом изучения.

Помеха — всякое постороннее воздействие на полезный сигнал, оказывающее мешающее действие при его приеме и проявляющее себя изменением его формы.

Классификация помех приведена на рисунке 1.

Аддитивной является сумма полезного сигнала Sм(t) и помехи N 0 (t):

Z(t)=Sм(t)+N 0 (t) (6)

Мультипликативной является произведение полезного сигнала и помехи:

Z(t)=Sм(t)?N 0 (t) (7)

Рисунок 1 - Классификация помех

Внешними являются помехи, возникающие вне канала, к ним относятся:

  • атмосферные возникают в атмосфере земли и могут быть вызваны грозовыми разрядами, осадками, пылевыми бурями, северным сиянием;
  • космические возникают в космическом пространстве и могут быть вызваны солнечной активностью, космическими телами;
  • промышленные могут быть вызваны промышленными установками: высокочастотными генераторами, высоковольтными линиями электропередачи, электрифицированным транспортом;
  • от других систем связи обуславливаются воздействием на полезный сигнал одной системы связи сигналов других систем, например, прослушивание радиопередач или другого разговора в телефонной трубке, прием на одной частоте срезу нескольких радиопередач.

Внутренними являются помехи, возникающие внутри канала, к ним относятся собственные шумы , которые, в свою очередь, подразделяются на:

  • тепловые — обусловлены хаотическим движением электрических зарядов в проводниках;
  • дробовые обусловлены неоднородной плотностью носителей заряда в проводниках.

Собственные шумы не могут быть устранены, т. к. они вызваны физикой процесса передачи электрической энергии.

Импульсными помехами являются сконцентрированные по времени скачки тока или напряжения (рисунок 2а).

Флуктуационные помехи вызваны флуктуациями (отклонением от среднего значения) тока и напряжения (рисунок 2б).

Периодические помехами являются периодические скачки тока или напряжения (рисунок 2в).

Рисунок 2 - Виды помех по форме: а) импульсные, б) флуктуационные, в) периодические

Собственные шумы канала являются флуктуационными помехами и имеют спектральную плотность мощности равномерно распределенную во всех диапазонах частот используемых для электросвязи (0…10 14 Гц). По аналогии с белым светом, имеющем в своем спектре составляющие на всех частотах, данные шумы называются белым шумом.

При прохождении сигнала через систему связи и при воздействии на него помехи его форма изменяется. Изменение формы сигнала называется искажением.

Различают нелинейные и линейные искажения.

Нелинейными являются искажения, при которых в спектре сигнала появляются новые составляющие. Такие искажения вызваны нелинейностью характеристик элементов и блоков, входящих в аппаратуру системы связи.

Линейными являются искажения, при которых в спектре сигнала не появляются новые составляющие. Такие искажения возникают из –за изменения соотношения между составляющими спектра сигнала. Линейные искажения бывают амплитудно-частотными (АЧИ), при которых изменяются амплитуды составляющих спектра сигнала и фазо-частотные (ФЧИ), при которых изменяются фазы составляющих спектра. На рисунке 3а приведен сигнал являющийся результатом сложения двух гармонических сигналов с одинаковыми амплитудами и фазами и отличающимися друг от друга частотами (обозначен толстой линией). Соответственно в спектре данного сигнала присутствует две гармонических составляющих на частотах w с и 2w с. На рисунке 3б уменьшилась амплитуда второй гармоники, в результате чего изменилась форма сигнала, т. е. произошли амплитудно-частотные искажения. На рисунке 3в изменилась фаза второй гармоники на 90°, в результате чего, опять произошло изменение формы сигнала, т. е. произошли фазо-частотные искажения. Как видно из диаграмм в спектре сигнала и в первом и во втором случае новые составляющие не появились, хотя форма сигнала изменилась.

Рисунок 3 - Линейные искажения: а) сигнал; б) амплитудно-частотные искажения; в) фазо-частотные искажения

АЧИ объясняются не равномерностью коэффициента передачи для различных составляющих спектра сигнала. При идеальной АЧХ коэффициент передачи одинаков для всех составляющих спектра сигнала и АЧИ отсутствуют. Реальная АЧХ четырехполюсника с увеличением частоты имеет спад (рисунок 4а), что приводит к уменьшению амплитуды высокочастотных составляющих спектра сигнала и соответственно к АЧИ.

ФЧИ вызваны неодинаковым временем задержки tз=j/w для составляющих различных частот.. При идеальной ФЧХ время задержки для всех составляющих одинаковое и ФЧИ отсутствуют. Реальная ФЧХ имеет подъем на высоких частотах, поэтому время задержки для высокочастотных составляющих меньше чем для никочастотных и появляются ФЧИ (рисунок 4б).

Рисунок 4 - Характеристики четырехполюсника: а) АЧХ; б) ФЧХ

Компенсация АЧИ и ФЧИ осуществляется специальными устройствами — корректорами.

Помеха в канале – это посторонний сигнал, спектр в котором частично или полностью совпадает с полезным сигналом. Помехи существуют как при наличии сигнала, так и при его отсутствии и обусловлены свойствами каналообразующего оборудования и внешними причинами. Соответственно, помехи делятся на два вида: внутренние и внешние .

К внутренним помехам относят тепловые помехи всех элементов, образующих канал, и помехи, вызванные нелинейностью устройств, входящих в канал связи.

К внешним помехам относят шумы нелинейных переходов, возникающие за счёт переходных влияний между параллельными цепями, шумы радиостанций, атмосферные помехи(пыльные бури, дожди), промышленные помехи(шумы от электроустановок и электрифицированных ЖД).

В линейных трактах, образованных различными линиями связи, наиболее значимы следующие виды помех: шумы линейных переходов, которые занимают половину мощности шумов в каналах связи, а так же тепловой шум и шумы нелинейных переходов.

В коаксиальных кабелях тепловые шумы и шумы нелинейных переходов приблизительно равны.

В ВЛС наиболее весомы внешние шумы. Это наиболее шумный канал.

Нормой шума в канале связи считается его мощность 10000пВт на 2.5 тысяч км. Действующую мощность и напряжение в канале принято оценивать псофометрическими единицами, то есть на выходе канала подключают псофометр (вольтметр с квадратичной шкалой, ко входу которого подключен псофометрический фильтр, оценивающий особенности чувствительности человеческого уха. Ухо человека наиболее чувствительно в диапазоне от 0,8 до 1,2кГц.

Псофометрический коэффициент вольтметра равен 0,75.

Если измеряют шум в каналах телевидения, то на входе такого вольтметра установлен контур, учитывающий особенности глаза. В каналах вещания псофометр рассчитан на диапазон до 15кГц.

Собственные помехи.

Тепловой шум, обусловленный хаотическим движением электронов, присутствует во всех элементах канала. К нему относят шумы транзисторов, диодов, ламп и так далее. Тепловой шум имеет флуктуационный характер, так как складывается из последовательности независимых кратковременных импульсов. Спектр такого шума практически равномерен в диапазоне до 6ГГц, поэтому уровень теплового шума в КТЧ при 20 0 С равен приблизительно –139дБм. Уровень собственных шумов на протяжении линейного тракта остаётся постоянным, а уровень сигнала, передаваемого по тракту, уменьшается. Причём большее затухание получают каналы, расположенные в верхнем диапазоне частот.

Помехозащищённость – это разница между уровнем сигнала и шума.

Для повышения помехозащищённости от собственного шума высокочастотных спектральных составляющих сигнала системы обычно работают в режиме с “перекосом уровней” ΔР.

Однако перекос уровней не компенсирует неравномерность затухания линейного тракта.

Перекос уровней делают меньше затухания, так как если компенсировать всю неравномерность, то в низкочастотных каналах появится недопустимый уровень шумов нелинейных переходов за счёт большой мощности сигнала в верхних каналах. Перекос уровней предназначен не для коррекции линейных искажений, а для повышения помехозащищённости от собственных шумов линейного тракта каналов, расположенных в высокочастотной области.

Атмосферные помехи.

К атмосферным помехам относят: газовые разряды, магнитные бури, полярные сияния, снежные и песчаные бури, осадки, и другие атмосферные явления большой интенсивности.

Уровень атмосферных помех в каналах ВЛС колеблется в диапазоне от –70 до – 80дБм.

Шумы линейных переходов.

Возникают вследствие электромагнитных влияний между параллельными цепями, в результате неоднородностей в линии связи, а также через 3 – и цепи.

Способы уменьшения шумов.

1.) Согласование выхода систем передачи со входом в линейный тракт.

2.) Инверсия и сдвиг линейного спектра для систем, работающим по параллельным цепям.

Инверсия спектра приводит к тому, что шумы в линейных переходах становятся не внятными, значит их влияние уменьшается, что эквивалентно повышению помехозащищённости на 7 дБм.

3.) Применение вариантов линейного спектра со сдвигом частот.

Вследствие сдвига частот переходные разговоры также будут не внятными, а помехозащищённость увеличится на 2 – 4 дБм в зависимости от величины сдвига.

Импульсные помехи.

Импульсные помехи – это кратковременные импульсы напряжения, амплитуда которых превышает амплитуду полезного сигнала. Причиной импульсных помех являются атмосферные помехи, а также плохие контакты, пайка и низкая квалификация обслуживающего персонала. Они возникают при переключении импульсного оборудования с основного на резервный. Импульсные помехи в телефонных каналах и каналах вещания проявляются в виде треска, а в каналах передачи данных снижают достоверность связи.

Импульсные помехи:

1.) Не должны превышать порога 100мВ с вероятностью 2·10 -5 за час.

2.) Не должны быть больше порога 200мВ с вероятностью 2·10 -6 за один час.

3.) Не должны быть больше порога 300мВ с вероятностью 1·10 -6 за один час.

Методы борьбы с помехами.

Защита кабельных линий связи от электромагнитных влияний осуществляется с помощью газоразрядников в оконечном оборудовании и повышения квалификации обслуживающего персонала.

Помехами называются напряжения или токи постороннего происхождения, появляющиеся в каналах связи и ограничивающие дальность передачи полезных сигналов. Помехи, частоты которых лежат в полосе звуковых частот, создают слышимый в телефоне или громкоговорителе шум, снижающий качество связи или вещания. Высокочастотные помехи, проходя через аппаратуру канала связи, также могут проявляться в виде шумов. Помехи в полосе видеочастот ухудшают изображение на экране кинескопа телевизора.

В зависимости от источника возникновения и от характера их воздействия помехи делятся на собственные помехи канала связи, взаимные, создаваемые влиянием каналов связи друг на друга, и внешние от посторонних электромагнитных полей.

Собственные помехи или шумы возникают от источников, находящихся в данном канале связи. Они существуют независимо от передачи информации по другим каналам связи и в основном определяются следующими причинами: пульсация выпрямленного напряжения источников питания, недоброкачественными контактами в аппаратуре и на линиях, кратковременными короткими замыканиями, тресками, создаваемыми токами разряда конденсатора, микрофонными шумами, нелинейными искажениями в аппаратуре тракта передачи и т.д.

Взаимные помехи, возникающие при передачи информации по соседним каналам, появляются в результате недостаточного переходного затухания между данным каналом и влияющими каналами, различные повреждения в аппаратуре влияющих каналов.

Внешние помехи делятся на промышленные, радиопомехи, атмосферные и космические. Промышленные помехи создаются в результате влияния электромагнитных полей различных электронных устройств: линии электропередачи, электрооборудование промышленных предприятий, контактных сетей электрифицированного транспорта (трамвая, троллейбуса). Радиопомехи возникают от излучения радиостанций различного назначения.

К атмосферным относятся помехи, вызванные различными атмосферными явлениями: магнитными бурями, грозовыми разрядами и т.д. К космическим - электромагнитные помехи, создаваемые излучением Солнца.

Мешающее действие шумов в проводных каналах определяется отношением напряжения шумов к напряжению полезного сигнала. Это отношение оценивается разностью уровней полезного сигнала и шумов, называемой защищенностью канала от шума. Исследования показали, что при воспроизведении речи и музыки необходимо иметь определенное соотношение сигнал-шум. Нормальный прием речевого сигнала обеспечивается при 20дБ в телефонном канале. Хорошее воспроизведение радиовещания возможно при 40дБ. В телефонных и вещательных каналов мешающее действие шумов определяется наличием в их частотном спектре составляющих, которые наиболее сильно действуют на слух человека. Известно, что не все частоты одинаково воспроизводятся телефоном и громкоговорителем и воспринимаются ухом. Доказано, что наибольшая чувствительность системы телефон-ухо лежит в области 800 Гц, а громкоговоритель-ухо в области 1000 Гц.

Помехи измеряются с учетом избирательности органов восприятия и неравномерности АЧХ. Для этого при измерении помех в телефонных и вещательных каналах определяют не общее напряжение помех, а так называемое псофометрическое.

Псофометрическим напряжением называется напряжение помех, существующее на нагрузочном резисторе сопротивлением 600 Ом, согласованным с выходным сопротивлением питающей цепи.

Псофометр

Псофометром называется электронный измерительный прибор для измерения помех в каналах связи и вещания. Он представляет собой электронный вольтметр с избирательностью, определяемой псофометрическими характеристиками. На рисунке 1 приведена структурная схема псофометра.

Рисунок 1 – Структурная схема псофометра

Входное устройство обеспечивает значительное входное сопротивление 200 кОм на средних частотах и не менее 6 кОм на краях диапазона. Предусмотрено низкоомное входное сопротивление 600 Ом для согласования входа псофометра с измеряемой цепью.

Основными узлами псофометра являются полосовые фильтры: один с телефонной псофометрической характеристикой и второй с вещательной. Чтобы псофометр можно было использовать как обычный квадратичный вольтметр, предусмотрен эквивалент затухания.

Полезные сигналы редко присутствуют в электрических цепях в чистом виде. Практически всегда на них накладываются шумы и помехи. При этом полезный сигнал искажается при передаче, и сообщение воспроизводится с некоторой ошибкой. Причиной ошибок являются как искажения, вносимые самим каналом, так и различного вида помехи, воздействующие на сигнал при передаче. В собственно устройствах канала передачи информации имеются два основных источника шумов: дискретная структура тока в усилительных элементах (транзисторах, микросхемах и т.д.) и тепловое движение свободных электронов в проводниках электрической цепи. При этом временные и частотные характеристики канала определяют линейные искажения. Кроме того, радиоканал может вносить и нелинейные искажения, обусловленные нелинейностью тех или иных его звеньев, цепей или устройств.

В общем случае под помехой понимают случайный сигнал, однородный с полезным и действующий одновременно с ним. Для систем передачи информации помеха - любое случайное воздействие на полезный сигнал, ухудшающее верность приема и воспроизведения передаваемых по линии связи сообщений.

По месту возникновения помехи делят на внешние и внутренние. Причинами внешних помех являются природные процессы и работа различных технических устройств. В диапазонах дециметровых и менее волн имеют значение и космические помехи , связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах. В диапазоне оптических частот имеется квантовый шум , вызванный дискретной природой сигнала.

В радиоканалах встречаются атмосферные помехи , обусловленные электрическими процессами в атмосфере, прежде всего грозовыми разрядами.

Сильные помехи создают промышленные установки. Это так называемые индустриальные помехи , возникающие из-за резких изменений тока в мощных электрических цепях всевозможных электротехнических устройств. Распространенным видом внешних помех являются помехи от посторонних радио- и телестанций, систем военного назначения. Они обусловлены нарушением регламента распределения частот, недостаточной стабильностью частот генераторов и плохой фильтрацией гармоник сигнала, а также нелинейными процессами в каналах, ведущими к так называемым перекрестным искажениям (проявляются в переносе модуляции с мешающего внеполосного сигнала на полезный).

Основными видами внешних помех в проводных каналах связи являются импульсные шумы и прерывание связи.

Внутренние помехи обусловлены процессами, происходящими при работе самого устройства. В любом диапазоне частот имеют место внутренние шумы устройств, связанные с хаотическим движением носителей заряда в усилительных приборах, резисторах и других элементах.

Аналитически влияние помехи r(t) на полезный сигнал u(t) в общем виде можно выразить оператором Y:

где функция s(u(t)) отражает искаженный полезный сигнал.

Возможны два сочетания полезного сигнала и шума. Если оператор У в формуле (2.1) вырождается в линейную сумму сигнальной составляющей и помехи, т.е.

то помеху называют аддитивной (от англ, addition - сложение).

Если же оператор У может быть представлен в виде произведения некоторого коэффициента k(t) (здесь k(t) - случайный процесс) и сигнала u(t), т.е.

то помеху называют мультипликативной (от англ, multiplication - умножение).

Мультипликативные помехи обусловлены случайными изменениями параметров радиоканала. Они проявляются в изменении уровня сигнала. В реальных каналах передачи информации обычно имеют место и аддитивные, и мультипликативные помехи, и поэтому

По основным свойствам аддитивные помехи делят на три класса: сосредоточенные но спектру (узкополосные помехи), импульсные (сосредоточенные во времени) и флуктуационные (распределенные по частоте и во времени) помехи, не ограниченные ни во времени, ни но спектру.

Сосредоточенными по спектру называют помехи, основная часть мощности которых приходится на отдельные участки диапазона частот, меньших полосы пропускания системы связи.

Импульсной (сосредоточенной во времени) помехой называют регулярную или хаотическую последовательность импульсных сигналов, однородных с полезным сигналом. Источниками таких помех являются цифровые и коммутирующие элементы цепей или работающего рядом с ними устройства. В зависимости от частоты следования импульсов одна и та же помеха может воздействовать как импульсная на приемник с широкой полосой пропускания и как флуктуациопная па приемник с относительной узкой полосой пропускания.

Флуктуационная помеха (флуктуационный шум) представляет случайный процесс с нормальным распределением - гауссовский процесс (закон Гаусса). Эти помехи имеют место практически во всех реальных каналах связи, и их называют шумами. С физической точки зрения аддитивные флуктуационные помехи порождаются в системах связи различного рода флуктуациями, т.е. случайными отклонениями тех или иных физических величин (параметров) от их средних значений. Среди таких шумов можно прежде всего назвать внутренние шумы электронных усилителей. Различают следующие виды флуктуационных шумов:

  • тепловой (шум Джонсона);
  • фликкер-шум (иногда - розовый шум);
  • дробовый (квантовый).

Тепловые шумы резисторов. Одной из главных причин возникновения шума являются флуктуации объемной плотности электрического заряда в резистивных элементах из-за хаотического теплового движения носителей. В любом резисторе всегда имеются свободные электроны, находящиеся в хаотическом тепловом движении. При этом может оказаться, что в определенный момент времени в одном направлении проходит больше электронов, чем в другом. Значит, даже в отсутствие внешней ЭДС мгновенное значение тока, текущего через резистор, отлично от нуля. Эти мгновенные изменения тока вызывают на выводах резистора шумовую разность потенциалов. Среднее значение такого напряжения равно нулю, а переменная составляющая проявляется как шум.

Важное значение для систем связи имеет спектр мощности шумового напряжения на концах резистора. Его определяют по формуле Найквиста:

где R - сопротивление резистора, Ом; к = 1,38- 10~ 23 Дж/К - постоянная Больцмана; Т - абсолютная температура резистора в градусах Кельвина. Часто удобнее пользоваться односторонним энергетическим спектром, который задают в области положительных частот | В 2 /Гц |:

Спектральную плотность мощности теплового шума оценим из такого примера: при Г= 300 К и R = 20 кОм значение N 0 = 4 -1,38 -10 23 -300-20 000 = = 3,31 10 1(> В 2 /Гц, откуда среднее квадратическое значение напряжения f/ m = 3,3M0 16 В/Гц 2 .

Спектральная плотность мощности теплового шума одинакова для всех частот, представляющих интерес для большинства систем связи; другими словами, источник теплового шума на всех частотах излучает с равной мощностью на единицу ширины полосы - от постоянной составляющей до частоты порядка 10 12 Гц. Следовательно, простая модель теплового шума предполагает, что спектральная плотность его мощности равномерна и достаточно точно соответствует модели белого шума (см. далее).

Фликкер-шум - шум, спектральная плотность которого изменяется с частотой по закону 1// (с примерно постоянной спектральной мощностью на декаду - изменение в 10 раз). Часто фликкер-шумом называют любой шум, спектральная плотность которого уменьшается с увеличением частоты. Обычно на частотах выше 10 кГц фликкер-шумами пренебрегают.

Дробовой шум обусловлен неравномерным движением дискретных носителей электрического тока в электронных приборах - диодах, транзисторах, микросхемах и лампах; он имеет равномерный спектр, т.е. является белым; в отличие от резисторов флуктуации возникают не за счет хаотического теплового движения электронов, а вследствие статистической независимости их упорядоченного перемещения.

Поскольку тепловой шум присутствует во всех системах связи и является заметным источником помех, характеристики теплового шума (аддитивный, белый и гауссов) часто применяются для моделирования шума в системах связи. Гауссов шум с нулевым средним полностью характеризуется дисперсией, поэтому эту модель особенно просто использовать и при детектировании сигналов, и при проектировании оптимальных приемников.

По виду частотного спектра помехи делят на стационарный (белый) и нестационарный шумы. Белый шум содержит гармонические составляющие с одинаковой амплитудой и случайной начальной фазой, которые равномерно распределены практически по всему частотному радиодиапазону - от постоянной составляющей до частоты порядка 10 12 Гц. В теории оптимальной фильтрации часто вводят понятие квазибелого шума (от лат. quasi - якобы; почти), параметры и характеристики которого близки к показателям белого шума.

Нестационарный шум - шум, длящийся короткие промежутки времени (меньшие, чем время усреднения в измерителях).

В зависимости от спектра помехи могут быть сплошными или селективными. Сигнал сплошной помехи характеризуется распределением его мощности по широкому спектру частот. Селективная помеха характеризуется тем, что ее мощность сосредоточена либо на одной частоте, либо в узкой полосе частот.

Хорошее техническое проектирование может устранить большинство шумов путем экранирования, фильтрации, выбора модуляции и оптимального местоположения приемника.

С математической точки зрения информационные случайные сигналы (сигналы случайного характера, несущие передаваемую информацию) и шумы подчиняются одним вероятностным законам, поэтому они получили обобщенное название случайные колебания или случайные процессы.

Для анализа случайных сигналов применяют методы статистической теории связи, базирующейся на математическом аппарате теории вероятностей и теории случайных процессов. С целью упрощения и наглядности анализа работу электрических цепей часто рассматривают при воздействии детерминированных сигналов. Для учета же случайного характера реального сигнала в качестве его математической модели используют не отдельную детерминированную функцию u(t ), а совокупность подобных функций {u k (t)} = u { (t), u 2 (t ),..., образующих случайный процесс, в котором будет заключена полезная информация.