Тарифы Услуги Сим-карты

Чем характеризуются каналы передачи информации. Виды каналов передачи информации. Кабельные линии связи

Передача информации - термин, объединяющий множество физических процессов перемещения информации в пространстве. В любом из этих процессов задействованы такие компоненты, как источник и приемник данных, физический носитель информации и канал (среда) ее передачи.

Процесс передачи информации

Исходными вместилищами данных являются различные сообщения, передаваемые от их источников к приёмникам. Между ними и расположены каналы передачи информации. Специальные технические устройства-преобразователи (кодеры) формируют на основе содержания сообщений физические носители данных - сигналы. Последние подвергаются целому ряду преобразований, включая кодирование, сжатие, модуляцию, а затем направляются в линии связи. Пройдя через них, сигналы проходят обратные преобразования, включая демодуляцию, распаковывание и декодирование, в результате чего из них выделяются исходные сообщения, воспринимаемые приемниками.

Информационные сообщения

Сообщение - это некое описание явления или объекта, выраженное в виде совокупности данных, имеющей признаки начала и конца. Некоторые сообщения, например, речь и музыка, представляют собой непрерывные функции времени звукового давления. При телеграфной связи сообщение - это текст телеграммы в виде буквенно-цифровой последовательности. Телевизионное сообщение - это последовательность сообщений-кадров, которые «видит» объектив телекамеры и фиксирует их с частотой следования кадров. Подавляющая часть передаваемых в последнее время через системы передачи информации сообщений представляют собой числовые массивы, текстовые, графические, а также аудио- и видеофайлы.

Информационные сигналы

Передача информации возможна, если у нее имеется физический носитель, характеристики которого изменяются в зависимости от содержания передаваемого сообщения таким образом, чтобы они с минимальными искажениями преодолели канал передачи и могли быть распознаны приемником. Эти изменения физического носителя данных образуют информационный сигнал.

Сегодня передача и обработка информации происходят при помощи электрических сигналов в проводных и радиоканалах связи, а также благодаря оптическим сигналам в ВОЛС.

Аналоговые и цифровые сигналы

Широко известным примером аналогового сигнала, т.е. непрерывно изменяющегося во времени, является напряжение, снимаемое с микрофона, которое несет речевое или музыкальное информационное сообщение. Оно может быть усилено и передано по проводным каналам на звуковоспроизводящие системы концертного зала, которые донесут речь и музыку со сцены до зрителей на галерке.

Если в соответствии с величиной напряжения на выходе микрофона непрерывно во времени изменять амплитуду или частоту высокочастотных электрических колебаний в радиопередатчике, то можно осуществить передачу в эфир аналогового радиосигнала. Телепередатчик в системе аналогового телевидения формирует аналоговый сигнал в виде напряжения, пропорционального текущей яркости элементов изображения, воспринимаемого объективом телекамеры.

Однако если аналоговое напряжение с выхода микрофона пропустить через цифроаналоговый преобразователь (ЦАП), то на его выходе получится уже не непрерывная функция времени, а последовательность отсчетов этого напряжения, взятых через равные промежутки времени с частотой дискретизации. Кроме того, ЦАП выполняет еще и квантование по уровню исходного напряжения, заменяя весь возможный диапазон его значений конечным набором величин, определяемых числом двоичных разрядов своего выходного кода. Получается, что непрерывная физическая величина (в данном случае это напряжение) превращается в последовательность цифровых кодов (оцифровывается), и далее уже в цифровом виде может храниться, обрабатываться и передаваться через сети передачи информации. Это существенно повышает скорость и помехоустойчивость подобных процессов.

Каналы передачи информации

Обычно под этим термином понимаются комплексы технических средств, задействованных в передаче данных от источника к приемнику, а также среда между ними. Структура такого канала, использующая типовые средства передачи информации, представлена следующей последовательностью преобразований:

ИИ - ПС - (КИ) - КК - М - ЛПИ - ДМ - ДК - ДИ - ПС

ИИ - источник информации: человек либо иное живое существо, книга, документ, изображение на неэлектронном носителе (холст, бумага) и т.д.

ПС - преобразователь информсообщения в информсигнал, выполняющий первую стадию передачи данных. В качестве ПС могут выступать микрофоны, теле- и видеокамеры, сканеры, факсы, клавиатуры ПК и т. д.

КИ - кодер информации в информсигнале для сокращения объема (сжатия) информации с целью повысить скорость ее передачи или сократить полосу частот, требуемую для передачи. Данное звено необязательно, что показано скобками.

КК - канальный кодер для повышения помехозащищённости информсигнала.

М - сигнальный модулятор для изменения характеристик промежуточных сигналов-носителей в зависимости от величины информсигнала. Типичный пример - амплитудная модуляция сигнала-носителя высокой несущей частоты в зависимости от величины низкочастотного информсигнала.

ЛПИ - линия передачи информации, представляющая совокупность физической среды (например, электромагнитное поле) и технических средств для изменения ее состояния с целью передачи сигнала-носителя к приемнику.

ДМ - демодулятор для отделения информсигнала от сигнала-носителя. Присутствует только при наличии М.

ДК - канальный декодер для выявления и/или исправления ошибок в информсигнале, возникших на ЛПИ. Присутствует только при наличии КК.

ДИ - декодер информации. Присутствует только при наличии КИ.

ПИ - приемник информации (компьютер, принтер, дисплей и т. д.).

Если передача информации двусторонняя (канал дуплексный), то по обе стороны ЛПИ имеются блоки-модемы (МОдулятор-ДЕМодулятор), объединяющие в себе звенья М и ДМ, а также блоки-кодеки (КОдер-ДЕКодер), объединяющие кодеры (КИ и КК) и декодеры (ДИ и ДК).

Характеристики каналов передачи

К основным отличительным чертам каналов относятся пропускная способность и помехозащищенность.

В канале информсигнал подвергается действию шумов и помех. Они могут вызываться естественными причинами (например, атмосферными для радиоканалов) или быть специально созданными противником.

Помехозащищенность каналов передачи повышают путем использования разного рода аналоговых и цифровых фильтров для отделения информсигналов от шума, а также спецметодов передачи сообщений, минимизирующих влияние шумов. Одним из таких методов является добавление лишних символов, не несущих полезного содержания, но помогающих контролировать правильность сообщения, а также исправлять в нем ошибки.

Пропускная способность канала равна максимальному количеству двоичных символов (кбит), передаваемых им при отсутствии помех за одну секунду. Для различных каналов она варьируется от нескольких кбит/с до сотен Мбит/с и определяется их физическими свойствами.

Теория передачи информации

Клод Шеннон является автором специальной теории кодирования передаваемых данных, открывшим методы борьбы с шумами. Одна из основных идей этой теории заключается в необходимости избыточности передаваемого по линиям передачи информации цифрового кода. Это позволяет при потере какой-то части кода в процессе его передачи восстановить потерю. Такие коды (цифровые информсигналы) называются помехоустойчивыми. Однако избыточность кода нельзя доводить до слишком большой степени. Это ведёт к тому, что передача информации идет с задержками, а также к удорожанию систем связи.

Цифровая обработка сигналов

Другой важной составляющей теории передачи информации является система методов цифровой обработки сигналов в каналах передачи. Эти методы включают алгоритмы оцифровывания исходных аналоговых информсигналов с определенной частотой дискретизации, определяемой на основе теоремы Шеннона, а также способы формирования на их основе помехозащищенных сигналов-носителей для передачи по линиям связи и цифровой фильтрации принятых сигналов с целью отделения их от помех.

Каналы связи (КС) служат для передачи сигнала и являются общим звеном любой системы передачи информации.

По физической природе каналы связи подразделяются на механические, используемые для передачи материальных носителей информации, акустические , оптические и электрические , передающие соответственно звуковые, световые и электрические сигналы.

Электрические и оптические каналы связи в зависимости от способа передачи сигналов можно подразделить на проводные, использующие для передачи сигналов физические проводники (электрические провода, кабели, световоды), и беспроводные, использующие для передачи сигналов электромагнитные волны (радиоканалы, инфракрасные каналы).

По форме представления передаваемой информации каналы связи делятся на аналоговые , по которым информация передается в непрерывной форме, т.е. в виде непрерывного ряда значений какой-либо физической величины, и цифровые, передающие информацию, представленную в виде цифровых (дискретных, импульсных) сигналов различной физической природы.

В зависимости от возможных направлений передачи информации каналы связи подразделяются на симплексные, позволяющие передавать информацию только в одном направлении; полудуплексные , обеспечивающие попеременную передачу информации как в прямом, так и в обратном направлениях; дуплексные , позволяющие вести передачу информации одновременно в прямом и обратном направлениях.

Каналы связи бывают коммутируемые , которые создаются из отдельных участков (сегментов) только на время передачи по ним информации, а по окончании передачи такой канал ликвидируется (разъединяется), и некоммутируемые (выделенные), создаваемые на длительное время и имеющие постоянные характеристики по длине, пропускной способности, помехозащищенности.

Широко используемые в автоматизированных системах обработки информации и управления электрические проводные каналы связи различаются по пропускной способности:

низкоскоростные, скорость передачи информации в которых от 50 до 200 бит/с. Это телеграфные каналы связи, как коммутируемые (абонентский телеграф), так и некоммутируемые;

среднескоростные, использующие аналоговые (телефонные) каналы связи; скорость передачи в них от 300 до 9600 бит/с, а в новых стандартах V.32 - V.34 Международного консультативного комитета по телеграфии и телефонии (МККТТ) и от 14400 до 56 000 бит/с;

высокоскоростные (широкополосные), обеспечивающие скорость передачи информации свыше 56 000 бит/с.

Для передачи информации в низкоскоростных и среднескоростных КС физической средой обычно являются проводные линии связи: группы либо параллельных, либо скрученных проводов, называемых витая пара. Она представляет собой изолированные проводники, попарно свитые между собой для уменьшения как перекрестных электромагнитных наводок, так и затухания сигнала при передаче на высоких частотах.


Для организации высокоскоростных (широкополосных) КС используются различные кабели:

Экранированные с витыми парами из медных проводов;

Неэкранированные с витыми парами из медных проводов;

Коаксиальные;

Оптоволоконные.

STP-кабели (экранированные с витыми парами из медных проводов) имеют хорошие технические характеристики, но неудобны в работе и дороги.

UTP-кабели (неэкранированные с витыми парами из медных проводов) довольно широко используются в системах передачи данных, в частности в вычислительных сетях.

Выделяют пять категорий витых пар: первая и вторая категории используются при низкоскоростной передаче данных; третья, четвертая и пятая - при скоростях передачи соответственно до 16,25 и 155 Мбит/с. Эти кабели обладают хорошими техническими характеристиками, сравнительно недороги, удобны в работе, не требуют заземления.

Коаксиальный кабель представляет собой медный проводник, покрытый диэлектриком и окруженный свитой из тонких медных проводников экранирующей защитной оболочкой. Скорость передачи данных по коаксиальному кабелю довольно высокая (до 300 Мбит/с), но он недостаточно удобен в работе и имеет высокую стоимость.

Оптоволоконный кабель (рис. 8.2) состоит из стеклянных или пластиковых волокон диаметром несколько микрометров (свето-ведущая жила) с высоким показателем преломления п с, окруженных изоляцией с низким показателем преломления n 0 и помещенных в защитную полиэтиленовую оболочку. На рис. 8.2, а показано распределение показателя преломления по сечению оптоволоконного кабеля, а на рис. 8.2, б - схема распространения лучей. Источником излучения, распространяемого по оптоволоконному кабелю, является светодиод или полупроводниковый лазер, приемником излучения - фотодиод, который преобразует световые сигналы в электрические. Передача светового луча по волокну основана на принципе полного внутреннего отражения луча от стенок световедущей жилы, за счет чего обеспечивается минимальное затухание сигнала.

Рис. 8.2. Распространение лучей по оптоволоконному кабелю:

а - распределение показателя преломления по сечению оптоволоконного кабеля;

б - схема распространения лучей

Кроме того, оптоволоконные кабели обеспечивают защиту передаваемой информации от внешних электромагнитных полей и высокую скорость передачи до 1000 Мбит/с. Кодирование информации осуществляется с помощью аналоговой, цифровой или импульсной модуляции светового луча. Оптоволоконный кабель достаточно дорогой и используется обычно лишь для прокладки ответственных магистральных каналов связи, например, проложенный по дну Атлантического океана кабель связывает Европу с Америкой. В вычислительных сетях оптоволоконный кабель используется на наиболее ответственных участках, в частности, в Internet. По одному толстому магистральному оптоволоконному кабелю можно одновременно организовать несколько сотен тысяч телефонных, несколько тысяч видеотелефонных и около тысячи телевизионных каналов связи.

Высокоскоростные КС организуются на базе беспроводных радиоканалов.

Радиоканал - это беспроводный канал связи, прокладываемый через эфир. Для формирования радиоканала используются радиопередатчик и радиоприемник. Скорости передачи данных по радиоканалу практически ограничиваются полосой пропускания приемопередающей аппаратуры. Радиоволновый диапазон определяется используемой для передачи данных частотной полосой электромагнитного спектра. В табл. 8.1 представлены диапазоны радиоволн и соответствующие им частотные полосы.

Для коммерческих телекоммуникационных систем чаще всего используются частотные диапазоны 902 - 928 МГц и 2,40 - 2,48 ГГц.

Беспроводные каналы связи обладают плохой помехозащищенностью, но обеспечивают пользователю максимальную мобильность и быстроту реакции.

Телефонные линии связи наиболее разветвлены и распространены. Они осуществляют передачу звуковых (тональных) и факсимильных сообщений. На базе телефонной линии связи построены информационно-справочные системы, системы электронной почты и вычислительных сетей. На базе телефонных линий могут быть созданы аналоговые и цифровые каналы передачи информации.

В аналоговых телефонных линиях телефонный микрофон преобразует звуковые колебания в аналоговый электрический сигнал, который и передается по абонентской линии в АТС. Требуемая для передачи человеческого голоса полоса частот составляет примерно 3 кГц (диапазон 300 Гц -3,3 кГц). Передача сигналов вызова производится по тому же каналу, что и передача речи.

В цифровых каналах связи аналоговый сигнал перед вводом дискретизируется - преобразуется в цифровую форму: каждые 125 мкс (частота дискретизации равна 8 кГц) текущее значение аналогового сигнала отображается 8-разрядным двоичным кодом.

Таблица 8.1

Диапазоны радиоволн и соответствующие им частотные полосы

Государственный экзамен

(State examination)

Вопрос №3 «Каналы связи. Классификация каналов связи. Параметры каналов связи. Условие передачи сигнала по каналу связи».

(Пляскин )


Канал связи. 3

Классификация. 5

Характеристики (параметры) каналов связи. 10

Условие передачи сигналов по каналам связи. 13

Литература. 14


Канал связи

Канал связи - система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле (тракт связи ), представляет только физическую среду распространения сигналов, например, физическую линию связи.

Канал связи предназначен для передачи сигналов между удаленными устройствами. Сигналы несут информацию, предназначенную для представления пользователю (человеку), либо для использования прикладными программами ЭВМ.

Канал связи включает следующие компоненты:

1) передающее устройство;

2) приемное устройство;

3) среду передачи различной физической природы (Рис.1) .

Формируемый передатчиком сигнал, несущий информацию, после прохождения через среду передачи поступает на вход приемного устройства. Далее информация выделяется из сигнала и передается потребителю. Физическая природа сигнала выбирается таким образом, чтобы он мог распространяться через среду передачи с минимальным ослаблением и искажениями. Сигнал необходим в качестве переносчика информации, сам он информации не несет.

Рис.1. Канала связи (вариант №1)

Рис.2 Канал связи (вариант №2)

Т.е. это (канал) - техническое устройство (техника+среда).


Классификация

Классификаций будет приведено ровно три типа. Выбирайте на вкус и цвет:

Классификация №1:

Существует множество видов каналов связи, среди которых наиболее часто выделяют каналы проводной связи (воздушные, кабельные, световодные и др.) и каналы радиосвязи (тропосферные, спутниковые и др.). Такие каналы в свою очередь принято квалифицировать на основе характеристик входного и выходного сигналов, а также по изменению характеристик сигналов в зависимости от таких явлений, происходящих в канале, как замирания и затухание сигналов.



По типу среды распространения каналы связи делятся на:

Проводные;

Акустические;

Оптические;

Инфракрасные;

Радиоканалы.

Каналы связи также классифицируют на:

· непрерывные (на входе и выходе каналанепрерывные сигналы),

· дискретные или цифровые (на входе и выходе канала – дискретные сигналы),

· непрерывно-дискретные (на входе канала–непрерывные сигналы, а на выходе–дискретные сигналы),

· дискретно-непрерывные (на входе канала–дискретные сигналы, а на выходе–непрерывные сигналы).

Каналы могут быть как линейными и нелинейными , временными и пространственно-временными .

Возможна классификация каналов связи по диапазону частот .

Системы передачи информации бывают одноканальные и многоканальные . Тип системы определяется каналом связи. Если система связи построена на однотипных каналах связи, то ее название определяется типовым названием каналов. В противном случае используется детализация классификационных признаков.

Классификация №2 (более подробная) :

1. Классификация по диапазону используемых частот

Ø Километровые (ДВ) 1-10 км, 30-300 кГц;

Ø Гектометровые (СВ) 100-1000 м, 300-3000 кГц;

Ø Декаметровые (КВ) 10-100 м, 3-30 МГц;

Ø Метровые (МВ) 1-10 м, 30-300 МГц;

Ø Дециметровые (ДМВ) 10-100 см, 300-3000 МГц;

Ø Сантиметровые (СМВ) 1-10 см, 3-30 ГГц;

Ø Миллиметровые (ММВ) 1-10 мм, 30-300 ГГц;

Ø Децимилимитровые (ДММВ) 0,1-1 мм, 300-3000 ГГц.

2. По направленности линий связи

- направленные (используются различные проводники):

Ø коаксиальные,

Ø витые пары на основе медных проводников,

Ø волоконнооптические.

- ненаправленные (радиолинии);

Ø прямой видимости;

Ø тропосферные;

Ø ионосферные

Ø космические;

Ø радиорелейные (ретрансляция на дециметровых и более коротких радиоволнах).


3. По виду передаваемых сообщений:

Ø телеграфные;

Ø телефонные;

Ø передачи данных;

Ø факсимильные.

4. По виду сигналов:

Ø аналоговые;

Ø цифровые;

Ø импульсные.

5. По виду модуляции (манипуляции)

- В аналоговых системах связи :

Ø с амплитудной модуляцией;

Ø с однополосной модуляцией;

Ø с частотной модуляцией.

- В цифровых системах связи :

Ø с амплитудной манипуляцией;

Ø с частотной манипуляцией;

Ø с фазовой манипуляцией;

Ø с относительной фазовой манипуляцией;

Ø с тональной манипуляцией (единичные элементы манипулируют поднесущим колебанием (тоном), после чего осуществляется манипуляция на более высокой частоте).

6. По значению базы радиосигнала

Ø широкополосные (B>> 1);

Ø узкополосные (B»1).

7. По количеству одновременно передаваемых сообщений

Ø одноканальные;

Ø многоканальные (частотное, временное, кодовое разделение каналов);


8. По направлению обмена сообщений

Ø односторонние;

Ø двусторонние.
9. По порядку обмена сообщения

Ø симплексная связь - двусторонняя радиосвязь, при которой передача и прием каждой радиостанции осуществляется поочередно;

Ø дуплексная связь - передача и прием осуществляется одновременно (наиболее оперативная);

Ø полудуплексная связь - относится к симплексной, в которой предусматривается автоматический переход с передачи на прием и возможность переспроса корреспондента.

10. По способам защиты передаваемой информации

Ø открытая связь;

Ø закрытая связь (засекреченная).

11. По степени автоматизации обмена информацией

Ø неавтоматизированные - управление радиостанцией и обмен сообщениями выполняется оператором;

Ø автоматизированные - вручную осуществляется только ввод информации;

Ø автоматические - процесс обмена сообщениями выполняется между автоматическим устройством и ЭВМ без участия оператора.

Классификация №3 (что-то может повторяться):

1. По назначению

Телефонные

Телеграфные

Телевизионные

Радиовещательные

2. По направлению передачи

Симплексные (передача только в одном направлении)

Полудуплексные (передача поочередно в обоих направлениях)

Дуплексные (передача одновременно в обоих направлениях)

3. По характеру линии связи

Механические

Гидравлические

Акустические

Электрические (проводные)

Радио (беспроводные)

Оптические

4. По характеру сигналов на входе и выходе канала связи

Аналоговые (непрерывные)

Дискретные по времени

Дискретные по уровню сигнала

Цифровые (дискретные и по времени и по уровню)

5. По числу каналов на одну линию связи

Одноканальные

Многоканальные

И еще рисунок сюда:

Рис.3. Классификация линий связи.


Характеристики (параметры) каналов связи

1. Передаточная функция канала : представляется в виде амплитудно-частотной характеристики (АЧХ) ипоказывает, как затухает амплитуда синусоиды на выходе канала связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала. Нормированная амплитудно-частотная характеристика канала показана на рис.4. Знание амплитудно-частотной характеристики реального канала позволяет определить форму выходного сигнала практически для любого входного сигнала. Для этого необходимо найти спектр входного сигнала, преобразовать амплитуду составляющих его гармоник в соответствии с амплитудно-частотной характеристикой, а затем найти форму выходного сигнала, сложив преобразованные гармоники. Для экспериментальной проверки амплитудно-частотной характеристики нужно провести тестирование канала эталонными (равными по амплитуде) синусоидами по всему диапазону частот от нуля до некоторого максимального значения, которое может встретиться во входных сигналах. Причем менять частоту входных синусоид нужно с небольшим шагом, а значит количество экспериментов должно быть большим.

-- отношение спектра выходного сигнала к входному
- полоса пропускания

Рис.4 Нормированная амплитудно-частотная характеристика канала

2. Полоса пропускания : является производной характеристикой от АЧХ. Она представляет собой непрерывный диапазон частот, для которых отношение амплитуды выходного сигнала к входному превышает некоторый заранее заданный предел, то есть полоса пропускания определяет диапазон частот сигнала, при которых этот сигнал передается по каналу связи без значительных искажений. Обычно полоса пропускания отсчитывается на уровне 0,7 от максимального значения АЧХ. Ширина полосы пропускания в наибольшей степени влияет на максимально возможную скорость передачи информации по каналу связи.

3. Затухание : определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по каналу сигнала определенной частоты. Часто при эксплуатации канала заранее известна основная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по каналу сигналов. Более точные оценки возможны при знании затухания на нескольких частотах, соответствующих нескольким основным гармоникам передаваемого сигнала.

Затухание обычно измеряется в децибелах (дБ) и вычисляется по следующей формуле: , где

Мощность сигнала на выходе канала,

Мощность сигнала на входе канала.

Затухание всегда рассчитывается для определенной частоты и соотносится с длиной канала. На практике всегда пользуются понятием "погонное затухание", т.е. затухание сигнала на единицу длины канала, например, затухание 0.1 дБ/метр.

4. Скорость передачи : характеризует количество бит, передаваемых по каналу в единицу времени. Она измеряется в битах в секунду - бит/с , а также производных единицах: Кбит/c, Мбит/c, Гбит/с . Скорость передачи зависит от ширины полосы пропускания канала, уровня шумов, вида кодирования и модуляции.

5. Помехоустойчивость канала : характеризует его способность обеспечивать передачу сигналов в условиях помех. Помехи принято делить на внутренние (представляет собой тепловые шумы аппаратуры ) и внешние (они многообразны и зависят от среды передачи ). Помехоустойчивость канала зависит от аппаратных и алгоритмических решений по обработке принятого сигнала, которые заложены в приемо-передающее устройство. Помехоустойчивость передачи сигналов через канал может быть повышена за счет кодирования и специальной обработки сигнала.

6. Динамический диапазон : логарифм отношения максимальной мощности сигналов, пропускаемых каналом, к минимальной.

7. Помехозащищенность: это помехозащищенность, т.е. помехозащищенность.

Каналом связи называют совокупность технических средств и физической среды, способной к передаче посылаемых сигналов, которые обеспечивают передачу сообщений от источника информации к получателю.

Каналы принято делить на непрерывные и дискретные.

В наиболее общем случае всякий дискретный канал включает в себя непрерывный как составную часть.

Если влиянием мешающих факторов на передачу сообщений в канале можно пренебречь, то такой идеализированный канал называется каналом без помех.

В таком канале каждому сообщению на входе однозначно соответствует определенное сообщение на выходе и наоборот. Если влиянием помех в канале пренебречь нельзя, то при анализе особенностей передачи сообщений по такому каналу используют модели, характеризующие работу канала при наличии помех.

В зависимости от конкретных свойств реальных каналов используют различные типы моделей. Канал, в котором вероятности отождествления первого сигнала со вторым и второго с первым одинаковы, называется симметричным каналом.

Канал, на выходе которого алфавит сигнала отключается от алфавита сигнала на входе, называется каналом со стиранием.

Канал со стиранием и трансляцией Канал со стиранием

Канал передачи сообщений к получателю дополнительным обратным каналом, служащим для повышения достоверности передачи, называется каналом с обратной связью.

Канал связи считается заданным, если известны данные о сообщениях на его входе, а также ограничения, которые накладываются на входные сообщения физическими характеристиками каналов.

Для характеристики каналов связи используют два понятия скорости передачи:

а) Техническая скорость передачи, характеризуется числом элементарных сигналов, передаваемых по каналу в единицу времени. Она зависит от свойств линий связи, а быстродействие от аппаратуры каналов. .

б) Информационная скорость, которая определяется средним количеством информации, передающаяся в единицу времени. Эта скорость зависит как от характеристик данного канала, так и от характеристик используемых сигналов.

Пропускной способностью канала называется максимальная скорость передачи информации по этому каналу, достигаемая при самых совершенных способах передачи и приемов. Пропускная способность, как и скорость передачи информации, вообще измеряется количеством передаваемой информации в единицу времени.

15. Согласование физических характеристик канала связи и сигналов

Каждый конкретный канал связи обладает физическими параметрами, определяющими возможности передачи по этому каналу тех или иных сигналов, независимо от назначения, любой канал можно охарактеризовать тремя основными параметрами:

1) - время доступа каналов, [c];

2)
- полоса пропускания канала связи, [Гц];

3)
- допустимое превышение сигнала над помехами (шумами).

- объем канала связи.

Чтобы оценить возможность передачи данного сигнала по конкретному каналу нужно соотнести характеристики канала с соответствующими характеристиками сигнала:

1) - длительность сигнала;

2) - полоса частот (ширина спектра) сигнала;

3)
- уровень превышения сигнала над помехами.

- объем сигнала.

Каналы передачи, их классификация и основные характеристики

Основные понятия и определения: канал передачи, его динамический диапазон, эффективно передаваемая полоса частот, время, в течении которого канал предоставлен для передачи первичного сигнала, пропускная способность канала. Основные параметры и характеристики канала. Принципы нормирования отклонения остаточного затухания, частотная характеристика, понятие «шаблона» . Фазо-частотная характеристика. Амплитудная характеристика и различные ее формы. Типовые каналы и их основные характеристики.

Ключевыми понятиями техники телекоммуникационных систем и сетей являются канал передачи и канал электросвязи.

Каналом передачи называется совокупность технических средств и среды распространения, обеспечивающая передачу сигналов электросвязи в определенной полосе частот или с определенной скоростью передачи между оконечными или промежуточными пунктами телекоммуникационных сетей.

По методам передачи сигналов электросвязи различают аналоговые ицифровые каналы.

1) Аналоговые каналы, в свою очередь, подразделяются на непрерывные идискретные в зависимости от изменения информационного параметра сигнала.

2)Цифровые каналы делятся на каналы с использование импульсно-кодовой модуляции (ИКМ ) , каналы с использованиемдифференциальной ИКМ и каналы на основедельта-модуляции . Каналы, в которых на одних участка используются аналоговые, а на других цифровые методы передачи сигналов, называютсясмешанными каналами передачи.

В зависимости от ширины полосы пропускания, в которой передаются сигналы электросвязи, и соответствия параметров каналов установленным нормам, различают аналоговые типовые каналы тональной частоты, типовые первичный, вторичный, третичный и четверичный широкополосные каналы. Типовые каналы передачи сигналов звукового вещания, сигналов изображения и звукового сопровождения телевидения ;

В зависимости от скорости передачи и соответствия параметров каналов установленным нормам различают: основной цифровой канал, первичный, вторичный, третичный, четверичный и пятеричный цифровые каналы ;

По виду среды распространения сигналов электросвязи различают: проводные каналы , организованные по кабельным и, реже, воздушным линиям связи иканалы радиосвязи , организованные по радиорелейным и спутниковым линиям связи.

Каналом электросвязи называется комплекс технических средств и среды распространения, обеспечивающий передачу первичных сигналов электросвязи от преобразователя сообщения в первичный сигнал до преобразователя первичного сигнала в сообщение.

Помимо приведенной классификации, каналы электросвязи подразделяются

По виду передаваемых первичных сигналов (или сообщений) различают телефонные каналы, каналы звукового вещания, телевизионные каналы, теле-

графные каналы иканалы передачи данных ;

По способам организации двусторонней связи различают двухпроводный однополосный канал, двухпроводный двухполосный канал ичетырехпроводный однополосный канал;

По территориальному признаку каналы электросвязи подразделяются на международные, междугородные, магистральные, зоновые и местные .

Рассмотренная классификация каналов передачи и электросвязи (далее просто каналы) соответствует сложившейся практике их организации и разработке требований к их основным параметрам и характеристикам, которые принято увязывать с соответствующими параметрами и характеристиками первичных сигналов.

Канал может характеризоваться тремя параметрами:

1) эффективно передаваемой полосой частот D F к , которую канал способен пропустить с выполнением требований к качеству передачи сигналов;

2) временем Т к , в течение которого канал предоставлен для передачи сигналов или сообщений;

3) динамическим диапазоном D к , под которым понимается отношение вида

где P кмакс – максимальная неискаженная мощность, которая может быть передана по каналу; P кмин – минимальная мощность сигнала, при которой обеспечивается необходимая защищенность от помех.

Очевидно, что передача сигнала с параметрами D F c ,Т с , иD c по каналу с параметрами D F к ,Т к иD к возможна при условии

Произведение трех параметров канала V к = D к × F к × T к называется егоемкостью . Сигнал может быть передан по каналу, если его емкость не менее объема сигнала (см. лекция 2). Если система неравенств (3.2) не выполняется, то возможнадеформация одного из параметров сигнала, позволяющих согласовать его объем с емкостью канала. Следовательно, условие возможности передачи сигнала по каналу можно представить в более общем виде

V к ³ V с . (3.3)

Канал характеризуется защищенностью

, (3.4)

где P п – мощность помех в канале.

Пропускная способность канала описывается следующим выражением

, (3.5)

где P ср средняя мощность передаваемого по каналу сигнала.

Канал передачи как четырехполюсник

Канал передачи, как совокупность технических средств и среды распространения электрического сигнала, представляет каскадное соединение различных четырехполюсников , осуществляющих фильтрацию, преобразование сигналов, их усиление и коррекцию. Следовательно, канал можно представитьэквивалентным четырехполюсником, параметры и характеристики которого определяют качество передачи сигналов, рис. 3.1.

Рис. 3.1. Канал передачи как четырехполюсник

На рис.3.1 приняты следующие обозначения: 1-1 и 2-2 -входные и выходные зажимы соответственно;I вх (j w ) иI вых (j w ) – комплексные входной и выходной токи;U вх (j w ) иU вых (j w ) – комплексные входное и выходное напряжения;Z вх (j w ) иZ вых (j w ) – комплексные входное и выходное сопротивления (как правило, величины чисто активные и равные, т.е.Z вх = R вх = Z вых = R вых );K (j w ) =U вых (j w ) /U вх (j w ) =К (w е jb (w ) – комплексный коэффициент передачи по напряжению,К (w ) – модуль коэффициента передачи иb (w ) – фазовый сдвиг между входным и выходными сигналами; если берется отношение выходного тока к входному, то говорят о коэффициенте передачи по току;u вх (t ), u вых (t ) – мгновенные значения напряжения входного и выходного сигналов ир вх и р вых – входной и выходной уровни напряжения или мощности сигналов.

Каналы передачи работают между реальными нагрузками Z н1 (j w ) и Z н2 (j w ), подключаемыми соответственно к зажимам 1-1 и 2-2.

Свойства каналов и их соответствия требованиям к качеству передачи сообщений определяется рядом параметров и характеристик.

Первым и одним из основных параметров каналов является остаточное затухание А r , под которым понимаетсярабочее затухание канала, измеренное или рассчитанное в условиях подключения к зажимам 1-1и 2-2 (рис. 3.1)активных сопротивлений, соответствующих номинальным значениям R вх и R вых соответственно. Входные и выходные сопротивления отдельных устройств канала передачи достаточно хорошо согласуются между собой. При этом условии рабочее затухание канала можно считать равным суммехарактеристических (собственных)затуханий отдельных устройств, не учитывая отражений. Тогда остаточное затухание канала может быть определено по формуле;

, (3.1)

где р вх и р вых – уровни на входе и выходе канала (см. рис. 3.1);A r – затуханиеi - го иS j - усилениеj - го четырехполюсников, составляющих канал передачи.

Это означает, что остаточное затухание (ОЗ) канала представляет собой алгебраическую сумму затуханий и усилений и удобна при расчетахА r , когда известны затухания усилительных участков и усиления усилителей. ОЗ измеряется на определенной для каждогоканала измерительной частоте .

В процессе эксплуатации ОЗ канала не остается величиной постоянной, а отклоняется от номинального значения под воздействием различных дестабилизирующих факторов. Эти изменения ОЗ называютсянестабильностью , которая оценивается по максимальному и среднеквадратическому значениям отклонений ОЗ от номинального значения или величиной их дисперсии.

Остаточное затухание канала связано с его полосой пропускания. Полоса частот канала, в пределах которой остаточное затухание отличается от номинального не более, чем на некоторую величину DA r , называется эффективно передаваемой полосой частот (ЭППЧ). В пределах ЭППЧ нормируются допустимые отклонения ОЗDA r от номинального значения. Наиболее распространенным способом нормирования является использование “шаблонов” допустимых отклонений ОЗ Примерный вид такого шаблона приведен на рис. 3.2.

Рис. 3.2. Примерный шаблон допустимых отклонений остаточного затухания канала передачи

На рис. 3.2 приняты следующие обозначения f 0 – частота, на которой определяется номинальное значение ОЗ; f н , f в – нижняя и верхняя граничные частоты ЭППЧ; 1,2 – границы допустимых отклонений ОЗ; 3 – вид измеренной частотной характеристики ОЗ. Отклонения ОЗ от номинального определяются по формуле

, (3.2)

где f - текущая частота иf 0 частота определения номинального значения ОЗ.

С понятием ЭППЧ тесно связана амплитудно-частотная характеристика -АЧХ (или просточастотная характеристика ) канала, под которой понимаетсязависимость остаточного затухания от частоты А r =j ч (f ) при постоянном уровне на входе канала, т.е. р вх = const . Эта характеристика оценивает амплитудно-частотные (просто частотные) искажения, вносимые каналом за счет зависимости его ОЗ от частоты. Допустимые искажения определяются шаблоном отклонений ОЗ в пределах ЭППЧ. Примерный вид АЧХ канала показан на рис. 3.3.

Для передачи ряда сигналов электросвязи важной является фазо-частотная характеристика – ФЧХ (простофазовая характеристика ) канала, под которой понимается зависимость фазового сдвига между выходным и входным сигналами от частоты, т.е.b=j ф (f). Общий вид фазовой характеристики канала приведен на рис. 3.4

(линия 1).

Рис.3. 3. Частотная характеристика канала. Рис.3. 4. Фазовая характеристика канала.

В средней части ЭППЧ указанная характерситика близка к линейной, а на ее границах наблюдается заметная нелинейность, обусловленная фильтрами, входящими в состав канала передачи. В связи с тем, что непосредственное измерение фазового сдвига, вносимого каналом, затруднительно, для оценки фазовых искажений рассматривают частотную характеристику группового времени прохождения – ГВП (или замедления – ГВЗ)

t (w ) = db (w) /d w , (3.3)

где b (w ) – фазо-частотная характеристика. Примерный вид частотной характеристики ГВП показан на рис.3.4 (линия 2).

Частотные характеристики остаточного затухания, фазового сдвига или группового времени прохождения определяют линейные искажения , вносимые каналами передачи при прохождении по ним сигналов электросвязи.

Зависимость мощности, напряжения, тока или их уровней на выходе канала от мощности, напряжения, тока или их уровней на входе канала называется амплитудной характеристикой АХ . Под АХ канала понимается также зависимость остаточного затухания канала от уровня сигнала на его входе, т.е.A r =j а (р вх ), измеренная на некоторой обусловленной постоянной частоте измерительного сигнала на входе канала, т.е.f изм =const.

Амплитудная характеристика канала может быть представлена различными зависимостями, показанными на рис.3.5: U вых =j н (U вх ) (рис.3.5 а, линии 1 и 2), А r = j А (р вх ) (рис. 3.5 б, линия 1),р вх =j р (р вых ) (рис. 3.5 б, линии 2 и 3), где приняты следующие обозначения:U вх , U вых – напряжения сигнала на входе и выходе канала соответственно;р вх , р вых – уровни (напряжения, мощности) сигналов на входе и выходе канала соответственно;A r – остаточное затухание канала передачи.

Из рассмотрения графиков, представленных на рис.3.5 видно, что АХ имеет три участка:

1) нелинейный участок при малых значениях напряжения или уровней сигнала на входе канала. Нелинейность АХ при этом объясняется соизмеримостью напряжения или уровня сигнала с шумами самого канала;

2) линейный участок при значениях напряжения или уровня входного сигнала, для которого характерна прямая пропорциональная зависимость между напряжением (уровнем) сигнала на входе канала и напряжением (уровнем) сигнала на выходе канала;

Рис.3. 5. Амплитудные характеристики канала передачи

3) участок с существенной нелинейностью при значениях входного напряжения (уровня) сигнала выше максимального U макс (р макс ), для которого характерно появлениенелинейных искажений. Если угол наклона прямой, соответствующей линейному участку АХ, равен 45 0 , то напряжение (уровень) сигнала на выходе канала равно напряжению (уровню) на его входе. Если угол наклона меньше 45 0 , то в канале имеет место затухание, а если угол наклона больше 45 0 , то в канале имеет место усиление. ЕслиA r > 0, то канал вносит затухание (ослабление), еслиA r <0, то канал передачи вноситостаточное усиление.

Незначительная нелинейность АХ при малых значениях входного напряжения или уровня сигнала не влияет на качество передачи и ею можно пренебречь. Нелинейность АХ при значительных значениях напряжения или уровня входного сигнала, выходящих за пределы линейного участка АХ, проявляются в возникновении гармоник иликомбинационных частот выходного сигнала. По АХ можно лишь приблизительно оценить величину нелинейных искажений. Более точно величина нелинейных искажений в каналах оцениваетсякоэффициентом нелинейных искажений илизатуханием нелинейности.

или
, (3.4)

где U – действующее значение напряжения первой (основной гармоники измерительного сигнала; U ,U и т.д. – действующие значения напряжений второй, третьей и т.д. гармоник сигнала, возникших из-за нелинейности АХ канала передачи. Кроме того, в технике многоканальных телекоммуникационных систем передачи широко пользуются понятиемзатухания нелинейности по гармоникам

А нг = 20lg(U / U n г ) =р - р n г ,n = 2, 3 …, (3.5)

где р – абсолютный уровеньпервой гармоники измерительного сигнала,р n г – абсолютный уровеньn –ой гармоники , обусловленной нелинейностью АХ канала.

Цифровые каналы характеризуются скоростью передачи, а качество передачи сигналов оценивается коэффициентом ошибки , под которым понимаетсяотношение числа элементов цифрового сигнала, принятых с ошибками к общему числу элементов сигнала, переданных в течение времени измерения

К ош = N ош / N =N ош / ВТ , (3.6)

где N ош – число ошибочно принятых элементов;N – общее число переданных элементов;В – скорость передачи в бодах;Т – время измерения (наблюдения).

Телекоммуникационные системы должны быть построены таким образом, чтобы каналы обладали бы определенной универсальностью и были бы пригодны для передачи различного вида сообщений. Такими свойствами обладают типовые каналы , параметры и характеристики которых нормированы. Типовые каналы могут бытьпростыми, т.е. не проходящим через оборудование транзита, и составными , т.е. проходящими через оборудование транзита.

Типовые каналы передачи

Канал тональной частоты . Типовой аналоговый канал передачи с полосой частот 300…3400 Гц и с нормированными параметрами и характеристиками называетсяканалом тональной частоты – КТЧ.

Нормированная (номинальная величина) относительного (измерительного) уровня на входе КТЧ равна р вх = - 13дБм 0, на выходе КТЧр вых = + 4дБм 0. Частота измерительного сигнала принимается равнойf изм = 1020 Гц (ранее 800 Гц ). Таким образом, номинальное остаточное затухание КТЧ равноA r = - 17 дБ , т.е. КТЧ вносит усиление равное 17дБ .

Эффективно передаваемой полосой частот КТЧ (составного и максимальной протяженности) называется полоса, на крайних частотах которой (0,3 и 3,4 кГц) остаточное затуханиеA r на 8,7 дБ превышает величину остаточного затухания на частоте 1020 Гц (ранее 800 Гц).

Частотная характеристика отклонений остаточного затухания D А r от номинального значения (- 17дБ ) должна оставаться в пределахшаблона , приведенного на рис. 3.6.

Рис. 3.6. Шаблон допустимых отклонений остаточного затухания КТЧ

Чтобы выполнить требования к частотной характеристики остаточного затухания, ее неравномерность для простого канала длиной 2500 км должна укладываться в переделы, указанные в табл. 3.1.

Таблица 3.1

f , кГц

D A r , дБ

Фазо-частотные искажения мало влияют на качество передачи речевых сигналов, но так как КТЧ используется для передачи и других первичных сигналов, большие фазо-частотные искажения или неравномерность частотной характеристики группового времени прохождения (ГВП) недопустимы. Поэтому нормируются отклонения ГВП от его значения на частоте 1900 Гц для простого канала длиной 2500 км, табл.3.2.

Таблица 3.2

f , кГц

Dt ,мс

Естественно, что для составных каналов отклонения ГВП будут во столько раз больше, сколько простых каналов организуют составной.

Амплитудная характеристика КТЧ нормируется следующим образом: остаточное затухание простого канала должно быть постоянным с точностью до 0,3 дБ при изменении уровня измерительного сигнала от –17,5 до +3,5дБ в точке с нулевым измерительным уровнем на любой частоте в переделах ЭППЧ. Коэффициент нелинейных искажений для простого канала не должен превышать 1,5% (1% по 3-й гармонике) при номинальном уровне передачи на частоте 1020Гц .

Нормирование касается и степени согласования входного и выходного сопротивлений КТЧ с сопротивлениями внешних цепей – нагрузок: внутренним сопротивлением источника передаваемых сигналов и сопротивлением нагрузки. Входное и выходное сопротивление КТЧ должны быть чисто активные и равны R вх = R вых = 600Ом . Вход и выход канала должны бытьсимметричными , коэффициент отражения d или затухание несогласованности (отражения ) А d равные соответственно не должны превышать 10% или 20дБ .

(3.7)

не должны превышать 10% или 20 дБ . ЗдесьZ н - номинальное, аZ р – реальное значение сопротивления.

Важным показателем качества передачи по КТЧ является мощность помех, которые измеряются специальным прибором, называемым псофометром (“псофос” – по гречески означает шум). Псофометр представляет вольтметр с квадратичной характеристикой выпрямления. Выбор такой характеристики объясняется тем, что ухо складывает шумы от отдельных источников по мощности, а мощность пропорциональна квадрату напряжения или тока. От обычных квадратичных вольтметров псофометры отличаются наличием у них частотной зависимости чувствительности. Эта зависимость учитывает различную чувствительность уха на отдельных частотах, входящих в состав спектра помех и шумов, и формируется взвешивающимпсофометрическим фильтром.

При подаче на вход псофометра напряжения частотой 800 Гц с нулевым измерительным уровнем его показание будет равно 775мВ . Для получения того же значения при иных частотах уровни должны быть большей частью выше. Напряжение помех, измеренное псофометромU псоф , связано с эффективным напряжениемU эфф соотношениемU псоф = k п × U эфф , здесьk п = 0,75 называетсяпсофометрическим коэффициентом.

Напряжение помех или шумов, измеренное псофометром, называется псофометрическим напряжением . Мощность, определяемая псофометрическим напряжением на некотором сопротивленииR , называетсяпсофометрической мощностью, которая равнаP псоф = k п × U 2 эфф / R = 0,56U 2 эфф R .

Средний уровень мощности помех с равномерным спектром оказывается при псофометрических измерениях в полосе частот 0,3…3,4 кГц на 2,5дБ (или в 1,78 раза) меньше, чем при измерениях действующих (эффективных) значений. Величина 2,5дБ называетсялогарифмическим псофометрическим коэффициентом.

Псофометрическая мощность помех в точке с нулевым измерительным уровнем КТЧ максимальной протяженности, состоящего из максимального числа простых каналов, не должна превышать 50000 пВтп 0 (пиковаттпсофометрических в точке нулевого относительного уровня). Соответствующее значение эффективной (невзвешенной ) допустимой мощности помех составляет 87000пВт. Псофометрическая мощность помех простого канала длиной 2500км не должна превышать 10000пВтп 0.

Нормируются также допустимые величины средней и пиковой мощности телефонных сигналов на входе КТЧ: в точке нулевого относительного уровня среднее значение мощности составляет 32 мкВт , а пиковое – 2220мкВт.