Тарифы Услуги Сим-карты

Опп программирование. Принципы ооп. Инкапсуляция и управление доступом

Событие в объектно-ориентированном программировании - это сообщение, которое возникает в различных точках исполняемого кода при выполнении определённых условий. События предназначены для того, чтобы иметь возможность предусмотреть реакцию программного обеспечения. Для решения поставленной задачи создаются обработчики событий: как только программа попадает в заданное состояние, происходит событие, посылается сообщение, а обработчик перехватывает это сообщение. В общем случае в обработчик не передаётся ничего, либо передаётся ссылка на объект, инициировавший (породивший) обрабатываемое событие. В особых случаях в обработчик передаются значения некоторых переменных или ссылки на какие-то другие объекты, чтобы обработка данного события могла учесть контекст возникновения события. Самое простое событие - это событие, сообщающее о начале или о завершении некоторой процедуры. Событие, по сути, сообщает об изменении состояния некоторого объекта. Наиболее наглядно события представлены в пользовательском интерфейсе, когда каждое действие пользователя порождает цепочку событий, которые, затем обрабатываются в приложении. В объектно-ориентированном анализе для описания динамического поведения объектов принято использовать модель состояний. Событие - это переход объекта из одного состояния в другое. Взаимодействие объектов также осуществляется при помощи событий: изменение состояния одного объекта приводит к изменению состояния другого объекта, а событие оказывается средством связи между объектами. Событие - это. Далее, выделяются четыре аспекта события:

Первый ряд примеров событий доставляет собственно сам жизненный цикл объекта:

  • создание объекта;
  • уничтожение объекта.

Более сложные примеры событий возникают тогда, когда у объекта появляются внутренние состояния, которые описываются соответствующей диаграммой переходов (из одного состояния в другое).

Современными языками объектно-ориентированного программирования являются С++ и Java . С середины 90-х годов многие объектно–ориентированные языки реализуются как системы визуального программирования , в которых интерфейсная часть программного продукта создается в диалоговом режиме, практически без написания программных операторов. К объектно – ориентированным системам визуального проектирования относятся Visual Basic , Delphi , C++ Builder , Visual C++. Язык VBA (Visual Basic for Applications) – язык приложений Microsoft Office (Excel , Word , Access , Power Point и др). VBA соблюдает основной синтаксис языка и правила программирования языков Basic – диалектов, позволяет создавать макросы для автоматизации выполнения некоторых операций и графический интерфейс пользователя, интеграцию между различными программными продуктами.

Целью курса является дать представление студентам об основных принципах объектно-ориентированного программирования на различных языках. Основной задачей курса является подготовка специалистов, владеющих современными методами и средствами разработки алгоритмов и программ, знающих современную технологию программирования и умеющих применять ее при решении сложных прикладных задач. Курс лекций расчитан на студентов, имеющих подготовку по информатике и программированию на языке С .

Лабораторные работы

  1. Объектно-ориентированное программирование для начинающих
  2. Лабораторная работа 1 по Adobe Flash: Рисование и закрашивание
  3. Лабораторная работа 2 по Adobe Flash: Символы и их трансформы
  4. Лабораторная работа 7 по Adobe Flash: Кадрированная анимация
  5. Лабораторная работа 9 по Adobe Flash: Вставка Flash-объекта в html-файл
  6. ООП в JavaScript. Лабораторная работа 1
    Основные понятия и определения: объект, метод, свойства, события
  7. ООП в JavaScript. Лабораторная работа 3. Форма, кнопка, текстовое поле
  8. ООП в JavaScript. Лабораторная работа 4. Типы данных. Переменные. Арифметические операции. Условная операция
  9. Введение в интерфейс, объекты и новые возможности MS Access 2007
  10. Лаб.2. Модификация базы данных. Использование связанных таблиц. Создание форм и отчетов

Литература

  1. Бруно Бабэ. Просто и ясно о Borland C++: Версии 4.0 и 4.5/ Пер. с англ. -М.:БИНОМ, 1994. - 400с.
  2. Буч Г. «Объектно-ориентированный анализ и проектирование с примерами приложений на С++» Пер. с англ. - М.: Бином; СПб.: Невский диалект, 1999.
  3. . - М, 2000
  4. Гайсарян С.С. «Объектно-ориентированное проектирование» (http://www.mista.ru/oop_book/index.htm)
  5. Жуков А. «Изучаем С» - СПб.: Питер, 2003.
  6. - Adobe Systems, 2010.
  7. Ишкова Э. «С++ начала программирования» - М.: Бином, 2001.
  8. Клочков Д.П., Павлов Д.А. Введение в объектно-ориентированное программирование. / Учебно-методическое пособие. - Изд. Нижегор. ун-та, 1995. - 70с.
  9. Легалов А. «Итоги экспансии объектно-ориентированной парадигмы» (http://www.softcraft.ru/paradigm/process/pr01.shtml
  10. Мухортов В.В., Рылов В.Ю. (методическое пособие) - ИМСО РАН, Новосибирск, 2002
  11. Немнюгин С., Перколаб Л. «Изучаем TurboPascal
  12. Плискин М. «Эволюция языков программирования» (://2..cctpu../edu///lang/_09.)
  13. . - МИФИ, 2003
  14. Объектно-ориентированная методология программирования (http://www.math.rsu.ru/smalltalk/sml-a.ru.html)
  15. Объектно-ориентированные системы: состояние и перспективы. Аналитический обзор по материалам фирмы OVUM. Обзор подготовил А.Г. Иванов. (http://www.math.rsu.ru/smalltalk/obzornew.ru.html)
  16. Объектно-ориентированные языки программирования. Сравнение с традиционными языками (://.suvvbcourse/1.)
  17. Патрикеев Ю.Н. «Объектно-ориентированное проектирование» (http://www.object.newmail.ru/oop1.html)
  18. Патрикеев Ю.Н. «Объектно-ориентированное программирование на Borland C++» (http://www.object.newmail.ru/obj0.html)
  19. Принципы объектно-ориентированного программирования – Лекции по системе визуального объектно-ориентированного проектирования Delphi - Лекции (http://blackman.wp-club.net/lection/visualprg.php)
  20. Стили программирования (http://media.karelia.ru/~ftt/IVK/new2/Inflect/T_1_16.htm)
  21. Страуструп Б. Язык программирования С++ (2-ред)./Пер. с англ.-М.: Радио и связь, 1995. - 352с.

Объектно-ориентированное программирование представляет собой дальнейшее развитие идей структурного программирования, основной целью которого является создание программ простой структуры. Это достигается за счет разбиения программы на максимально обособленные части.

Структурная программа состоит из совокупности подпрограмм, связанных с помощью интерфейсов. Подпрограмма работает с данными, которые либо являются локальными, либо передаются ей в качестве параметров. Каждая подпрограмма предназначена для работы с определенными типами данных. Ошибки часто связаны с тем, что в подпрограмму передаются неверные данные.

Естественный путь избежать таких ошибок - связать в одно целое данные и все подпрограммы, которые предназначены для их обработки. Эта идея лежит в основе ООП: из предметной области выделяются объекты, поведение и взаимодействие которых моделируются с помощью программы. Основные особенности объектно-ориентированной парадигмы были кратко описаны в начале этой главы в подразд. 6.1.

Объект, или класс, является абстрактным типом данных, создаваемым программистом. При описании класса определяются его поля (данные) я методы (подпрограммы их обработки). Конкретные переменные объектного типа называются экземплярами объекта. Аналогия из обыденной жизни: собака является объектом, а экземплярами - конкретные Жучка или Терри.

Выполнение программы состоит в том, что объекты обмениваются сообщениями. Это позволяет использовать при программировании понятия, более адекватно отражающие предметную область.

К преимуществам ООП относятся:

  • ? использование при программировании понятий, более близких к предметной области;
  • ? более простая структура программы в результате инкапсуляции, т.е. объединения свойств и поведения объекта и скрытия деталей его реализации;
  • ? возможность повторного использования кода за счет наследования;
  • ? сравнительно простая возможность модификации программы;
  • ? возможность создания библиотек объектов.

Эти преимущества проявляются при создании программ большого объема и классов программ. Однако создание объектно-ориентированной программы представляет собой весьма непростую задачу, поскольку в процесс добавляется этап разработки иерархии объектов, а плохо спроектированная иерархия приводит к появлению сложных и запутанных программ.

Кроме того, идеи ООП непросты для понимания и в особенности для практического применения. Чтобы эффективно использовать готовые объекты, необходимо освоить большой объем достаточно сложной информации. Неграмотное же применение ООП способно привести к созданию программ, сочетающих недостатки и структурного, и объектно-ориентированного подхода и лишенных их преимуществ.

Объекты В ПАСКАЛЕ объект - это тип данных,

Определяемый программистом. Объект

похож на тип «запись» (record), но кроме полей данных в нем можно описывать методы. Методами называются подпрограммы, предназначенные для работы с полями объекта. Внутри объекта описываются только заголовки методов:

type имя = object

описание элементов

заголовки методов

Поля и методы называются элементами объекта. Их видимостью управляют директивы private и public 1 . Ключевое слово private (закрытые ) ограничивает видимость перечисленных после него элементов файлом, в котором описан объект. Действие директивы распространяется до другой директивы или до конца объекта. В объекте может быть произвольное количество разделов private и public. По умолчанию все элементы объекта считаются видимыми извне, т.е. являются public (открытыми).

Для каждого поля объекта задается его имя и тип. Он может быть любым, кроме типа того же объекта, но может быть указателем на этот тип.

При определении состава методов исходят из требуемого поведения объекта. Каждое действие, которое должен выполнять объект, оформляется в виде отдельной процедуры или функции.

Пусть объект моделирует персонаж компьютерной игры, который характеризуется своим положением и изображением на экране,

Квадратные скобки означают, что эти директивы являются необязательными.

определенными «запасами» здоровья и вооружения и цветом, а также умеет атаковать противника: type monster = object

procedure init (x_, y_, health_, ammo_: word);

procedure attack;

procedure erase;

procedure move (x_, y_: word); private

health, ammo: word; color: word;

Вся внешняя информация, необходимая для выполнения действий с объектом, должна передаваться методам в качестве параметров. Параметры могут иметь любой тип, в том числе и тип того же объекта. Имена параметров не должны совпадать с именами полей объекта.

Описание методов (текст подпрограмм) размещается вне объекта в разделе описания процедур и функций:

procedure monster.init (х_, у_, health_, ammoj word); begin x:= x_; y:= y_; health:= health_; ammo:= ammo_; color:= yellow; end; procedure monster.draw; begin ... {процедуры вывода изображения} end;

Поля объекта используются внутри методов непосредственно, без указания имени объекта. Методы представляют собой разновидность подпрограмм, поэтому внутри них можно описывать локальные переменные. Как правило, поля объекта объявляют

private, а методы - public.

Объекты часто описывают в модулях. Тип объекта определяется в интерфейсном разделе модуля, а методы объекта - в разделе реализации. Объектный тип можно определять только в разделе описания типов самого внешнего блока программы или модуля.

Экземпляры объектов Экземпляр объекта - это переменная

Объектного типа. Время жизни и видимость объектов зависят от вида и места их описания и подчиняются общим правилам ПАСКАЛЯ. Экземпляры объектов можно создавать в статической или динамической памяти:

var Vasia: monster; {описывается статический объект} pm: "?"monster; {описывается указатель на объект}

new (pm); {создается динамический объект}

Можно определять массивы объектов или указателей на объекты и создавать из них динамические структуры данных. Если объектный тип описан в модуле, для создания в программе переменных этого типа следует подключить модуль в разделе uses: uses graph, monsters;

Доступ к элементам объекта осуществляется либо с использованием составного имени, либо с помощью оператора with: Vasia.erase;

with pm A do begin init (100, 100, 30); draw; end;

Если объект описан в модуле, то получить доступ к значениям полей со спецификатором private в программе можно только через обращение к соответствующим методам.

При создании каждого объекта выделяется память, достаточная для хранения всех его полей. Методы объекта хранятся в одном экземпляре. Для того чтобы методу было известно, с данными какого экземпляра объекта он работает, при вызове ему в неявном виде передается параметр self, определяющий место расположения данных этого объекта.

Объекты одного типа можно присваивать друг другу, при этом выполняется поэлементное копирование всех полей. Кроме того, в ПАСКАЛЕ определены правила расширенной совместимости типов объектов. Они рассмотрены далее. Все остальные действия выполняются над отдельными полями объектов.

Управлять большим количеством Иерархии объектов

разрозненных объектов сложно. С этим -

можно справиться путем упорядочивания и ранжирования объектов, т.е. объединяя общие для нескольких объектов свойства в одном объекте и используя этот объект в качестве базового.

Эту возможность предоставляет механизм наследования. Он позволяет строить иерархии, в которых объекты-потомки получают свойства объектов-предков и могут дополнять их или изменять. Таким образом, наследование обеспечивает возможность повторного использования кода.

При описании объекта имя его предка записывается в круглых скобках после ключевого слова object.

Пусть требуется ввести в игру еще один тип персонажей, который должен обладать свойствами объекта monster, но по-другому выглядеть и атаковать:

type daemon = object (monster)

procedure init (x_, y_, health_, ammo_, magic_: word);

procedure attack; procedure draw; procedure erase; procedure wizardry; private

magic: word; end;

{---реализация методов объекта daemon---->

procedure daemon.init (x_, y_, health_, ammo_, magic_: word); begin

inherited init (x_, y_, health_, ammoj; color:= green; magic:= magic_; end;

Наследование полей. Унаследованные поля доступны в объекте точно так же, как и его собственные. Изменить или удалить поле при наследовании нельзя. Таким образом, потомок всегда содержит число полей, большее или равное числу полей своего предка.

Наследование методов. В «потомке» объекта можно не только описывать новые методы, но и переопределять существующие. Метод можно переопределить либо полностью, либо дополнив метод «предка».

Последний вариант иллюстрируется с помощью метода in it. В объекте daemon этот метод переопределен. Из него с помощью ключевого слова inherited (унаследованный) сначала вызывается старый метод, а затем выполняются дополнительные действия. Можно вызвать метод «предка» и явным образом с помощью конструкции monster, init.

Совместимость типов ПАСКАЛЬ - язык со строгой типизацией,

объектов Операнды выражений, параметры под-

программ и их аргументы должны подчиняться правилам соответствия типов. Для объектов понятие совместимости расширено: производный тип совместим со своим родительским типом. Эта расширенная совместимость типов имеет три формы:

  • 1) между экземплярами объектов;
  • 2) между указателями на экземпляры объектов;
  • 3) между параметрами и аргументами подпрограмм.

Во всех трех случаях родительскому объекту может быть присвоен экземпляр любого из его потомков, но не наоборот (рис. 6.6). Например, если определены переменные: type

pmonster = A monster; pdaemon = ^daemon; var m: monster; d: daemon; pm: pmonster; pd: pdaemon;

Рис. 6.6.

Поля и методы, введенные в потомке, после таких присваиваний недоступны. Даже если метод переопределен в потомке, через указатель на предка вызывается метод, описанный в предке. Так, в результате выполнения оператора pm A .draw на экране появится изображение объекта-предка, потому что тип вызываемого метода соответствует типу указателя, а не типу того объекта, на который он ссылается.

Если известно, что указатель на предка на самом деле хранит ссылку на потомка, можно обратиться к элементам, определенным в потомке, с помощью явного преобразования типа, например pdaemon (pm) A .wizardry.

Если объект является параметром подпрограммы, ему может соответствовать аргумент того же типа или типа любого из его потомков.

Объекты, фактический тип которых может изменяться во время выполнения программы, называются полиморфными. Полиморфным может быть объект, определенный через указатель или переданный в подпрограмму по адресу. Полиморфные объекты обычно применяются вместе с виртуальными методами.

Рассмотрим работу компилятора при Виртуальные методы

использовании в программе иерархий -

объектов. Исполняемые операторы программы в виде инструкций процессора находятся в сегменте кода. Каждая подпрограмма имеет точку входа. При компиляции вызов подпрограммы заменяется последовательностью команд, которая передает управление в эту точку. Этот процесс называется разрешением ссылок, или ранним связыванием, потому что адреса перехода на подпрограммы компилятор вставляет до выполнения программы.

Ясно, что с помощью этого механизма не удастся обеспечить возможность вызова методов разных объектов (предков и потомков) с помощью одного и того же указателя или из одной и той же подпрограммы. Это можно сделать только в том случае, если ссылки будут разрешаться на этапе выполнения программы в момент вызова метода. Такой механизм называется поздним связыванием и реализуется с помощью виртуальных методов. Они определяются с помощью директивы virtual, которая записывается в заголовке метода:

procedure attack; virtual;

Объявление метода виртуальным означает, что все ссылки на этот метод будут разрешаться по факту его вызова, т.е. не на стадии компиляции, а во время выполнения программы. Для реализации этой возможности необходимо, чтобы адреса виртуальных методов хранились там, где ими можно в любой момент воспользоваться, поэтому компилятор формирует для них таблицу виртуальных методов (Virtual Method Table-VMT). Для каждого объектного типа создается одна VMT.

Каждый объект во время выполнения программы должен иметь доступ к VMT. Эта связь устанавливается при создании объекта с помощью специального метода, называемого конструктором. Класс, имеющий хотя бы один виртуальный метод, должен содержать конструктор, например:

type monster = object

constructor init (x_, y_, health_, ammo_: word);

procedure attack; virtual;

procedure draw; virtual;

procedure erase; virtual;

procedure move (x_, y_: word);

x, у: word; health, ammo: word; color: word;

daemon = object (monster)

constructor init (x_, y_, health_, ammo_, magic_: word); procedure attack; virtual;

procedure draw; virtual; procedure erase; virtual; procedure wizardry; private

magic: word; end;

По ключевому слову constructor компилятор вставляет в начало метода фрагмент, который записывает ссылку на VMT в специальное поле объекта. Прежде чем использовать виртуальные методы, необходимо вызвать конструктор объекта.

Конструктор обычно используется для инициализации объекта.

В нем выполняется выделение памяти под динамические переменные или структуры, если они есть в объекте, и присваиваются начальные значения полям объекта. Поскольку связь с VMT устанавливается в самом начале конструктора, в его теле также можно пользоваться виртуальными методами.

Объект может содержать несколько конструкторов. Конструктор надо вызывать явным образом для каждого создаваемого объекта.

Вызов виртуального метода выполняется так: из объекта берется адрес его VMT, из VMT выбирается адрес метода, а затем управление передается этому методу (рис. 6.7). Таким образом, при использовании виртуальных методов из всех одноименных методов иерархии всегда выбирается тот, который соответствует фактическому типу вызвавшего его объекта.

Правила описания виртуальных методов.

  • 1. Если в объекте метод определен как виртуальный, во всех потомках он также должен быть виртуальным.
  • 2. Заголовки всех одноименных виртуальных методов должны совпадать.
  • 3. Переопределять виртуальный метод в каждом из потомков не обязательно: если он выполняет устраивающие потомка действия, он будет унаследован.
  • 4. Объект, имеющий хотя бы один виртуальный метод, должен содержать конструктор.
  • 5. При описании объектов рекомендуется определять как виртуальные те методы, которые в его потомках будут реализовываться по-другому.

Рис. 6.7.

Объекты в динамической Для хранения объектов в программах чаще памяти всего используется динамическая память,

поскольку это более эффективно. Благодаря расширенной совместимости типов можно описать указатель на базовый класс и хранить в нем ссылку на любой его объект-потомок, что в сочетании с виртуальными методами позволяет единообразно работать с различными классами иерархии. Из объектов и указателей на них создают различные динамические структуры.

Для выделения памяти под объекты используются процедура и функция new. Например, если определены указатели:

pmonster = A monster; pdaemon = A daemon;

var pm: pmonster; pd: pdaemon;

можно создать объекты с помощью вызовов: new (pm); {или pm:= new (pmonster);} new (pd); {или pd:= new (pdaemon);}

Так как после выделения памяти объект обычно инициализируют, для удобства определены расширенные формы new со вторым параметром - конструктором объекта: new (pm, init (1, 1, 1, 1);

{или pm:= new (pmonster, init (1, 1, 1, 1));} new (pd, init (1, 1, 1, 1, 1);

{или pd:= new (pdaemon, init (1, 1, 1, 1, 1));} Обращение к методам динамического объекта выполняется по обычным правилам:

pm^.draw; pmA.attack;

С объектами в динамической памяти часто работают через указатели на базовый класс, т.е. описывают указатель базового класса, а инициализируют его, создав объект производного класса: pm: = new (pdaemon, init (1, 1, 1, 1, 1));

Такие объекты называют полиморфными. Они используются, для того чтобы можно было работать с объектами разных классов единообразно.

Деструкторы

Для освобождения памяти, занятой объектом, применяется процедура

Она освобождает количество байтов, равное размеру объекта, соответствующего типу указателя. Если в указателе хранится ссылка на объект производного класса, будет освобождено неверное количество байтов. Для корректного освобождения памяти из-под полиморфных объектов следует использовать вторым параметром Dispose специальный метод - деструктор. В документации по Borland Pascal ему рекомендуется давать имя done:

destructor monster.done; begin end; Dispose (pm, done);

В деструкторе можно описывать любые действия, необходимые для конкретного объекта, например закрытие файлов. Деструктор может быть пустым. Для объектов, содержащих динамические поля, в нем записываются операторы освобождения памяти для этих полей.

Компилятор по служебному слову destructor вставляет в конец тела метода операторы получения размера объекта из VMT. Деструктор передает этот размер процедуре Dispose, и она освобождает количество памяти, соответствующее фактическому типу объекта. Деструкторы обязательно использовать только для динамических полиморфных объектов. В объекте можно определить несколько деструкторов (в этом случае они должны иметь разные имена).

Подборка видео по теме объектно-ориентированного программирования. Годится для новичков, изучающих ООП, и для подготовки к .

1. Введение в обучающий видеокурс по основам объектно-ориентированного программирования (ООП)

В этом вступительном ролике задается вектор всего курса. Здесь описывается план занятий, а автор делает акцент на том, что видео выстроены в логической последовательности. Рекомендуется смотреть ролики строго друг за другом, не перескакивая на другие темы, чтобы не запутаться.

2. Основные принципы объектно-ориентированного программирования. Что такое ООП и зачем оно нужно?

Поговорим о том, чем объектно-ориентированные программы отличаются от процедурных; из чего такая программа состоит, и каким образом над одной программой может работать множество программистов; вкратце пройдемся по главным парадигмам ООП: инкапсуляции, абстракции, полиморфизму, наследованию.

3. Понятие класса и объекта в ООП

В этом видео будет затронута самая важная тема курса – классы и объекты. По словам автора курса, полное понимание этих тем обеспечивает понимание объектно-ориентированного программирование на 70 процентов. Подробно рассмотрим процесс проектирования и воспроизводства классов и их объектов.

Развиваем тему классов в объектно-ориентированном программировании. Рассмотрим, каким должен быть хороший класс, а главное, как выглядит класс, который создан не понимающим принципы ООП программистом. Почему класс должен быть максимально простым и как к этому прийти.

5. Методы и данные в ООП

Что находится внутри класса, из чего он состоит? Что такое данные и методы, и без чего можно обойтись в описании класса? Как описывать метод, передавать параметры? Чем отличается метод класса в ООП от функции в процедурном программировании? В данном видео есть ответы на все перечисленные вопросы.

6. Методы в ООП. Типы методов

Продолжаем изучать тему методов в объектно-ориентированном программировании. Какие виды методов существует и зачем они нужны? Чем методы экземпляров отличаются от методов класса? Конструктор, деструктор, getter, setter – что это такое и зачем эти методы нужны?

7. Каким должен быть хороший метод в ООП

Теперь, зная основы создания методов в ООП, можно заняться вопросом создания хорошего метода. Здесь все так же, как с классом: если вы поняли суть методов и их роль в объектно-ориентированном программировании, вы почти наверняка будете описывать методы правильно. Но что бывает, если метод выглядит не так, как нужно, и что с этим делать – выясняем в этом видео.

8. Наследование в ООП

Поговорим об одном из самых мощных инструментов ООП – наследовании, и о том, как использовать этот механизм с умом. На примере рассмотрим процесс построения родительского класса и создание дочерних классов на его основе.

9. Инкапсуляция данных в ООП

Что означает слово «инкапсулирование», и как это относится к методам класса? Как защитить методы от внешнего воздействия, когда и зачем это может понадобиться? На примере рассмотрим методы, которые стоит инкапсулировать.

10. Абстракция в ООП

В отличие от других видео о парадигмах ООП, в этой теме не будет красочных примеров. Только теория, но она крайне важна для освоения и понимания, так как абстракция тесно связана с механизмом наследования. В этом видео разберемся не только с новой парадигмой, но и попробуем глубже понять основы ООП.

11. Полиморфизм в ООП

Что нужно знать, прежде чем понять эту парадигму? Что означает «полиморфизм»? Развиваем идею абстрагирования классов и методов, а также рассмотрим пример применения полиморфизма.

Наверное, в половине вакансий(если не больше), требуется знание и понимание ООП. Да, эта методология, однозначно, покорила многих программистов! Обычно понимание ООП приходит с опытом, поскольку годных и доступно изложенных материалов на данный счет практически нет. А если даже и есть, то далеко не факт, что на них наткнутся читатели. Надеюсь, у меня получится объяснить принципы этой замечательной методологии, как говорится, на пальцах.

Итак, уже в начале статьи я уже упомянул такой термин "методология". Применительно к программированию этот термин подразумевает наличие какого-либо набора способов организации кода, методов его написания, придерживаясь которых, программист сможет писать вполне годные программы.

ООП (или объектно-ориентированное программирование) представляет собой способ организации кода программы, когда основными строительными блоками программы являются объекты и классы, а логика работы программы построена на их взаимодействии.


Об объектах и классах

Класс - это такая структура данных, которую может формировать сам программист. В терминах ООП, класс состоит из полей (по-простому - переменных) и методов (по-простому - функций). И, как выяснилось, сочетание данных и функций работы над ними в одной структуре дает невообразимую мощь. Объект - это конкретный экземпляр класса. Придерживаясь аналогии класса со структурой данных, объект - это конкретная структура данных, у которой полям присвоены какие-то значения. Поясню на примере:

Допустим, нам нужно написать программу, рассчитывающую периметр и площадь треугольника, который задан двумя сторонами и углом между ними. Для написания такой программы используя ООП, нам необходимо будет создать класс (то есть структуру) Треугольник. Класс Треугольник будет хранить три поля (три переменные): сторона А, сторона Б, угол между ними; и два метода (две функции): посчитать периметр, посчитать площадь. Данным классом мы можем описать любой треугольник и вычислить периметр и площадь. Так вот, конкретный треугольник с конкретными сторонами и углом между ними будет называться экземпляром класса Треугольник. Таким образом класс - это шаблон, а экземпляр - конкретная реализация шаблона. А вот уже экземпляры являются объектами, то есть конкретными элементами, хранящими конкретные значения.

Одним из самых распространенных объектно-ориентированных языков программирования является язык java. Там без использования объектов просто не обойтись. Вот как будет выглядеть код класса, описывающего треугольник на этом языке:

/** * Класс Треугольник. */ class Triangle { /** * Специальный метод, называемый конструктор класса. * Принимает на вход три параметра: * длина стороны А, длина стороны Б, * угол между этими сторонами(в градусах) */ Triangle(double sideA, double sideB, double angleAB) { this.sideA = sideA; this.sideB = sideB; this.angleAB = angleAB; } double sideA; //Поле класса, хранит значение стороны А в описываемом треугольнике double sideB; //Поле класса, хранит значение стороны Б в описываемом треугольнике double angleAB; //Поле класса, хранит угла(в градусах) между двумя сторонами в описываемом треугольнике /** * Метод класса, который рассчитывает площадь треугольника */ double getSquare() { double square = this.sideA * this.sideB * Math.sin(this.angleAB * Math.PI / 180); return square; } /** * Метод класса, который рассчитывает периметр треугольника */ double getPerimeter() { double sideC = Math.sqrt(Math.pow(this.sideA, 2) + Math.pow(this.sideB, 2) - 2 * this.sideA * this.sideB * Math.cos(this.angleAB * Math.PI / 180)); double perimeter = this.sideA + this.sideB + sideC; return perimeter; } }

Если мы внутрь класса добавим следующий код:

/** * Именно в этом месте запускается программа */ public static void main(String args) { //Значения 5, 17, 35 попадают в конструктор класса Triangle Triangle triangle1 = new Triangle(5, 17, 35); System.out.println("Площадь треугольника1: "+triangle1.getSquare()); System.out.println("Периметр треугольника1: "+triangle1.getPerimeter()); //Значения 6, 8, 60 попадают в конструктор класса Triangle Triangle triangle2 = new Triangle(6, 8, 60); System.out.println("Площадь треугольника1: "+triangle2.getSquare()); System.out.println("Периметр треугольника1: "+triangle2.getPerimeter()); }

то программу уже можно будет запускать на выполнение. Это особенность языка java. Если в классе есть такой метод

Public static void main(String args)

то этот класс можно выполнять. Разберем код подробнее. Начнем со строки

Triangle triangle1 = new Triangle(5, 17, 35);

Здесь мы создаем экземпляр triangle1 класса Triangle и тут же задаем ему параметры сторон и угла между ними. При этом, вызывается специальный метод, называемый конструктор и заполняет поля объекта переданными значениями в конструктор. Ну, а строки

System.out.println("Площадь треугольника1: "+triangle1.getSquare()); System.out.println("Периметр треугольника1: "+triangle1.getPerimeter());

выводят рассчитанные площадь треугольника и его периметр в консоль.

Аналогично все происходит и для второго экземпляра класса Triangle .

Понимание сути классов и конструирования конкретных объектов - это уверенный первый шаг к пониманию методологии ООП.

Еще раз, самое важное:

ООП - это способ организации кода программы;

Класс - это пользовательская структура данных, которая воедино объединяет данные и функции для работы с ними(поля класса и методы класса);

Объект - это конкретный экземпляр класса, полям которого заданы конкретные значения.


Три волшебных слова

ООП включает три ключевых подхода: наследование, инкапсуляцию и полиморфизм. Для начала, приведу определения из wikipedia :

Инкапсуляция - свойство системы, позволяющее объединить данные и методы, работающие с ними, в классе. Некоторые языки (например, С++) отождествляют инкапсуляцию с сокрытием, но большинство (Smalltalk, Eiffel, OCaml) различают эти понятия.

Наследование - свойство системы, позволяющее описать новый класс на основе уже существующего с частично или полностью заимствующейся функциональностью. Класс, от которого производится наследование, называется базовым, родительским или суперклассом. Новый класс - потомком, наследником, дочерним или производным классом.

Полиморфизм - свойство системы, позволяющее использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта.

Понять, что же все эти определения означают на деле достаточно сложно. В специализированных книгах, раскрывающих данную тему на каждое определение, зачастую, отводится целая глава, но, как минимум, абзац. Хотя, сути того, что нужно понять и отпечатать навсегда в своем мозге программиста совсем немного.
А примером для разбора нам будут служить фигуры на плоскости. Из школьной геометрии мы знаем, что у всех фигур, описанных на плоскости, можно рассчитать периметр и площадь. Например, для точки оба параметра равны нулю. Для отрезка мы можем вычислить лишь периметр. А для квадрата, прямоугольника или треугольника - и то, и другое. Сейчас же мы опишем эту задачу в терминах ООП. Также не лишним будет уловить цепь рассуждений, которые выливаются в иерархию классов, которая, в свою очередь, воплощается в работающий код. Поехали:


Итак, точка - это самая малая геометрическая фигура, которая является основой всех прочих построений (фигур). Поэтому именно точка выбрана в качестве базового родительского класса. Напишем класс точки на java:

/** * Класс точки. Базовый класс */ class Point { /** * Пустой конструктор */ Point() {} /** * Метод класса, который рассчитывает площадь фигуры */ double getSquare() { return 0; } /** * Метод класса, который рассчитывает периметр фигуры */ double getPerimeter() { return 0; } /** * Метод класса, возвращающий описание фигуры */ String getDescription() { return "Точка"; } }

У получившегося класса Point пустой конструктор, поскольку в данном примере мы работаем без конкретных координат, а оперируем только параметрами значениями сторон. Так как у точки нет никаких сторон, то и передавать ей никаких параметров не надо. Также заметим, что класс имеет методы Point::getSquare() и Point::getPerimeter() для расчета площади и периметра, оба возвращают 0. Для точки оно и логично.


Поскольку у нас точка является основой всех прочих фигур, то и классы этих прочих фигур мы наследуем от класса Point . Опишем класс отрезка, наследуемого от класса точки:

/** * Класс Отрезок */ class LineSegment extends Point { LineSegment(double segmentLength) { this.segmentLength = segmentLength; } double segmentLength; // Длина отрезка /** * Переопределенный метод класса, который рассчитывает площадь отрезка */ double getSquare() { return 0; } /** * Переопределенный метод класса, который рассчитывает периметр отрезка */ double getPerimeter() { return this.segmentLength; } String getDescription() { return "Отрезок длиной: " + this.segmentLength; } }

Class LineSegment extends Point

означает, что класс LineSegment наследуется от класса Point . Методы LineSegment::getSquare() и LineSegment::getPerimeter() переопределяют соответствующие методы базового класса. Площадь отрезка всегда равняется нулю, а площадь периметра равняется длине этого отрезка.

Теперь, подобно классу отрезка, опишем класс треугольника(который также наследуется от класса точки):

/** * Класс Треугольник. */ class Triangle extends Point { /** * Конструктор класса. Принимает на вход три параметра: * длина стороны А, длина стороны Б, * угол между этими сторонами(в градусах) */ Triangle(double sideA, double sideB, double angleAB) { this.sideA = sideA; this.sideB = sideB; this.angleAB = angleAB; } double sideA; //Поле класса, хранит значение стороны А в описываемом треугольнике double sideB; //Поле класса, хранит значение стороны Б в описываемом треугольнике double angleAB; //Поле класса, хранит угла(в градусах) между двумя сторонами в описываемом треугольнике /** * Метод класса, который рассчитывает площадь треугольника */ double getSquare() { double square = (this.sideA * this.sideB * Math.sin(this.angleAB * Math.PI / 180))/2; return square; } /** * Метод класса, который рассчитывает периметр треугольника */ double getPerimeter() { double sideC = Math.sqrt(Math.pow(this.sideA, 2) + Math.pow(this.sideB, 2) - 2 * this.sideA * this.sideB * Math.cos(this.angleAB * Math.PI / 180)); double perimeter = this.sideA + this.sideB + sideC; return perimeter; } String getDescription() { return "Треугольник со сторонами: " + this.sideA + ", " + this.sideB + " и углом между ними: " + this.angleAB; } }

Тут нет ничего нового. Также, методы Triangle::getSquare() и Triangle::getPerimeter() переопределяют соответствующие методы базового класса.
Ну а теперь, собственно, тот самый код, который показывает волшебство полиморифзма и раскрывает мощь ООП:

Class Main { /** * Именно в этом месте запускается программа */ public static void main(String args) { //ArrayList - Это специальная структура данных в java, // позволяющая хранить объекты определенного типа в массиве. ArrayList figures = new ArrayList(); //добавляем три разных объекта в массив figures figures.add(new Point()); figures.add(new LineSegment(133)); figures.add(new Triangle(10, 17, 55)); for (int i = 0; i

Мы создали массив объектов класса Point , а поскольку классы LineSegment и Triangle наследуются от класса Point , то и их мы можем помещать в этот массив. Получается, каждую фигуру, которая есть в массиве figures мы можем рассматривать как объект класса Point . В этом и заключается полиморфизм: неизвестно, к какому именно классу принадлежат находящиеся в массиве figures объекты, но поскольку все объекты внутри этого массива принадлежат одному базовому классу Point , то все методы, которые применимы к классу Point также и применимы к его классам-наследникам.


Теперь о инкапсуляции. То, что мы поместили в одном классе параметры фигуры и методы расчета площади и периметра - это и есть инкапсуляция, мы инкапсулировали фигуры в отдельные классы. То, что у нас для расчета периметра используется специальный метод в классе - это и есть инкапсуляцию, мы инкапсулировали расчет периметра в метод getPerimiter() . Иначе говоря, инкапсуляция - это сокрытие реализции (пожалуй, самое короткое, и в то же время емкое определением инкапсуляции).


Полный код примера:

Import java.util.ArrayList; class Main { /** * Именно в этом месте запускается программа */ public static void main(String args) { //ArrayList - Это специальная структура данных в java, // позволяющая хранить объекты определенного типа в массиве. ArrayList figures = new ArrayList(); //добавляем три разных объекта в массив figures figures.add(new Point()); figures.add(new LineSegment(133)); figures.add(new Triangle(10, 17, 55)); for (int i = 0; i

Общая информация

ООП - это стиль программирования, появившийся в 80 годах 20 века. В отличие от процедурных языков, где данные и инструкции по их обработке существуют отдельно, в объектно-ориентированном программировании эта информация объединяется в единую сущность.

Основные принципы ООП

Наследование

Второй принцип ООП - наследование - это возможность одного класса использовать методы другого без повторения их фактической реализации. Наследование позволяет избавиться от избыточности исходного кода.

Полиморфизм

Еще один принцип ООП - полиморфизм. Его использование означает, что для манипуляции с объектами разной степени сложности можно создать один интерфейс, который будет по-разному реагировать на события и одновременно правильно реализовывать поставленные задачи.

Языки ООП

Принципы ООП используются в таких наиболее популярных языках программирования, как C++ и Java, на которых разработана значительная часть программ и приложений. Есть и менее используемые языки ООП - это Delphi, Object Pascal, Ruby и многие другие.

Критика ООП

Несмотря на в основном позитивные высказывания в сторону данной методологии, нередко принципы ООП подвергаются и критике. Как и у у ООП есть свои недостатки.

Во-первых, сложность перехода. Чтобы понять принципы ООП, потребуется достаточно много времени, тем более людям, вплотную работающим только с процедурными языками программирования.

Во-вторых, недостатком является более сложная документация, так как потребуется не только описывать классы и объекты, но и конкретные случаи их реализации.

В-третьих, излишняя универсальность методов может привести к тому, что исходный код и разрабатываемые программы будут перегружены невостребованными в данном конкретном случае функциями и возможностями. Кроме того, отмечают неэффективность с точки зрения распределения памяти. Однако вне зависимости от мнения окружающих число программистов ООП постоянно растет, а сами языки стремительно развиваются.