Тарифы Услуги Сим-карты

Общая структура протоколов GSM. Введение в межсетевое взаимодействие. ISDN

В ЦСИО обеспечен протокол канального уровня для логиче­ской связи данных, который позволяет ООД взаимодействовать друг с другом по каналу D. Этим протоколом является LAPD, подмножество HDLC. Протокол независим от скорости передачи и требует полнодуплексного прозрачного канала. Он описывается Рекомендацией I.440. В соответствии с этим протокол LAPD предназначен для выполнения многочис­ленных функций, связанных с управлением канала. Прежде всего он обеспечивает мультиплексирование и кодирование информации, контроль последовательности ее передачи, диагностирование каналов. Основными функциями этого протокола являются:

Обеспечение функционирования нескольких логических соединений в каждом канале;

Разграничение, синхронизация и создание прозрачности соединений (в том числе, отделение друг от друга, распознавание кадров);

Управление последовательностями передаваемых битов;

Обнаружение ошибок в кадрах и уничтожение кадров, содержащихошибки;

Восстановление соединений после сбоев и ошибок;

Передача без подтверждения ненумерованных кадров и с под­тверждением нумерованных кадров.

Протокол LAPD имеет формат кадра, очень похожий на формат HDLC. Более того, подобно HDLC, этот формат обеспе­чивает ненумерованные, супервизорные и информационные кад­ры. Управ­ляющий байт, который определяет различия между форматами информационного, супервизорного и ненумерованного кадров, идентичен структуре байта в HDLC).

Канальный протокол LAPD во многом похож на LAPB, используемый в Рекомендации Х.25, и произошел от последнего. Более того, LAPD совместим с Х.25/3 - сетевым уровнем, описываемым Рекомендацией Х.25. Отличается LAPD от LAPВ главным образом тем, что может обслуживать не один (как LAP В), а одновременно группу параллельно идущих каналов. Для этого LAPD обеспечивает мультиплексирование передаваемой инфор­мации. С этой целью в канале прокладывается несколько соеди­нений для одновременной работы нескольких комплектов терми­нального оборудования. В этой схеме адрес кадра LAPD идентифицирует не только канал, но и номер адресата.

LAPD предусматривает два байта для адресного поля. Это особенно ценно для мультиплексирова­ния многих функций в канале D. Расширение адресного поля предназначено для обеспечения большего числа битов в этом поле.

Бит в поле указания команды/отклика (К/О) идентифициру­ет, чем является кадр -командой или откликом. Со стороны пользователя отсылаются команды с битом К/О, установленным в 0. Отклики с этой же стороны идут с битом К/О, равным 1. Сеть выполняет все обратным образом. Она отправляет коман­ды, указывая 1 в бите К/О, а отклики -указывая 0.

Через интегральную сеть передаются пакеты, которые упаковываются в кадры. При коммутации каналов образуется последовательность групп каналов, по которой направляются эти кадры. При коммутации пакетов в каждом узле коммутации пакеты переупаковываются в новые кадры, передаваемые по очередной группе каналов. Рекомендация I.440 определяет две формы передачи информации по каждому каналу: одно- и многокадровая. Абонентская система выбирает одну из этих форм либо использует поочередно обе формы. Соответственно передается подтверждение о получении без ошибок одного либо группы кадров. Для этого в LAPD введены две команды и отклики, которые не су­ществуют в множестве HDLC. Это последовательная информа­ция 0(SI0) и последовательная информация 1(SI1). Команды SI0/SI1 предназначены для пересылки информации с использо­ванием последовательно подтверждаемых кадров. От­клики SI0 и SI1 используются при выполнении действий над единичным кадром для подтверждений приема кадров команд SI0 и SI1, а также для индикации потерь кадров или проблем с синхронизацией.

ЦСИО также обращаются к уровню 3. Спецификации уровня 3 (рекомендации I.450 и I.451) включают соединения коммутации каналов, соединения коммутации пакетов и соединения между пользователями.

Благодаря LAPD создается дуплексный синхронный канал, предоставляющий сетевому уровню четыре вида сервиса: запрос, подтверждение, индикацию, ответ. Запрос предназначен для подачисетевымуровнем заявки на необходимый сервис. Подтверждениеявляется сообщением канального уровня о приеме заявки на сервис. Индикация обеспечивает оповещение сетевого уровня о действиях, проводимых канальным уровнем по заявке на сервис. Ответ является информацией, передаваемой сетевым уровнем, о приеме индикации.

Протокол «Управление вызовом абонента» (см. рис. выше) определен Рекомендацией I.450. Он ориентирован на передачу специальных сообщений. Последние согласуют виды сервиса, используемого при сигнализации, и сообщают о результатах проверки совместимости этого сервиса во взаимодействующих абонентских системах. Обеспечение сквозной (через интегральную сеть) сигнализации осуществляется протоколами уровней 4-7. Второй режим коммутации отличается от первого (см. табл. в начале лекции) более современной методологией. Поэтому первый режим применяется в старых сетях. Для вновь создаваемых интегральных сетей рекомендуется использовать для сигнализации D-канал.

Третий режим (см. ту же табл.) обеспечивает в интегральной сети коммутацию пакетов. Иерархия протоколов в этом режиме показана на рис. 4, из которого следует, что в рассматриваемом режиме используются как протокол LAPD, так и широко применяемый в подсетях коммутации пакетов стандарт LAPВ. На сетевом уровне, как и в указанных подсетях, в интегральной сети используется третий уровень Рекомендации Х.25/3.

Тема 6 . Архитектура протокол DSS-1

Введение

Разработанный ITU-T протокол цифровой абонентской сиг­нализации №1 (DSS-1 - Digital Subscriber Signaling 1) между поль­зователем ISDN и сетью ориентирован на передачу сигнальных сообщений через интерфейс «пользователь-сеть» по D-каналу это­го интерфейса. Международный союз электросвязи (ITU-T) оп­ределяет канал D в двух вариантах:

а) канал 16 Кбит/с, используемый для управления соединения­ми по двум В-каналам;

б) канал 64 Кбит/с, используемый для управления соединения­ми по нескольким (до 30) В-каналам.

Концепции общеканальной сигнализации протоколов DSS-1 и ОКС-7 весьма близки, но эти две системы были специфициро­ваны в разное время и разными Исследовательскими комиссиями ITU-T, а потому используют различную терминологию. Тем не менее, некоторые пояснения в отношении сходства концепций и различий в терминах DSS-1 и ОКС-7 представля­ются полезными. На рис. 1 показаны АТС ISDN, звено сигна­лизации ОКС-7, оборудование пользователя ISDN и D-канал в интерфейсе «пользователь-сеть». Функции D-канала сходны с функциями звена сигнализации ОКС-7. Информационные бло­ки в D-канале, называемые кадрами, аналогичны сигнальным единицам (SU) в системе ОКС-7.

Рис. 1. Функциональные объекты протоколов DSS-1 и ISUP: (а) -примитивы DSS-1 и (б) - примитивы ОКС-7

Архитектура протокола DSS-1 разработана на основе семиуровневой модели взаимодействия открытых систем (модели OSI) и соответствует ее первым трем уровням. В контексте этой модели пользователь и сеть именуются системами, а протокол, как это имело место, например, для ОКС-7 определяется специ­фикациями:

Процедур взаимодействия между одними и теми же уровня­ми в разных системах, определяющих логическую последо­вательность событий и потоков сообщений;

Форматов сообщений, используемых для процедур органи­зации логических соединений между уровнем в одной систе­ме и соответствующим ему уровнем в другой системе. Фор­маты определяют общую структуру сообщений и кодирова­ние полейв составе сообщений;

примитивов, описывающих обмен информацией между смежными уровнями одной системы. Благодаря специфика­циям примитивов интерфейс между смежными уровнями может поддерживаться стабильно, даже если функции, вы­полняемые одним из уровней, изменяются.

Уровень 1 (физический уровень) протокола DSS-1 содержит функции формирования каналов В и D, определяет электрические, функциональные, механические и процедурные характеристики доступа и предоставляет физическое соединение для передачи со­общений, создаваемых уровнями 2 и 3 канала D. К функциям уров­ня 1 относятся:

Подключение пользовательских терминалов ТЕ к шине S-интерфейса с доступом к каналам В и D;

Подача электропитания от АТС для обеспечения телефонной связи в случае отказа местного питания;

Обеспечение работы в режиме «точка-точка» и в многоточеч­ном вещательном режиме.

Уровень 2 звена, известный также под названием LAPD (link access protocol for D-channels), обеспечивает использование D-канала для двустороннего обмена данными при взаимодействии про­цессов в терминальном оборудовании ТЕ с процессами в сетевом окончании NT. Протоколы уровня 2 предусматривают мультиплек­сирование и цикловую синхронизацию для каждого логического звена связи, поскольку уровень 2 обеспечивает управление сразу несколькими соединениями звена данных в канале D. Кроме того, функции уровня 2 включают в себя управление последовательно­стью передачи для сохранения очередности следования сообще­ний через соединение, а также обнаружение и исправление оши­бок в этих сообщениях.

Формат сигналов уровня 2 - это кадр. Кадр начинается и за­канчивается стандартным флагом и содержит в адресном поле два. важнейших идентификатора - идентификатор точки доступа к ус­лугам (SAPI) и идентификатор терминала (TEI).

SAPI используется для идентификации типов услуг, предос­тавляемых уровню 3, и может иметь значения от 0 до 63. Значение SAPI =0, например, используется для идентификации кадра, кото­рый применяется для сигнализации.

TEI используется для идентификации процесса, обеспечи­вающего предоставление услуги связи определенному терминалу. TEI может иметь любое значение от 0 до 126, позволяя идентифи­цировать до 127 различных процессов в терминалах ТЕ. В базовом доступе эти процессы могут распределяться между 8 терминала­ми, подключенными к общей пассивной шине. Значение ТЕ1=127 используется для идентификации вещательного режима (инфор­мация для всех терминалов).

Для уровня звена данных определены две формы передачи ин­формации: с подтверждением и без подтверждения. При неподтвер­ждаемой передаче информация уровня 3 переносится в ненумеро­ванных кадрах, причем уровень 2 не обеспечивает подтверждение получения этих кадров и сохранение очередности их следования.

При подтверждаемой передаче информации передаваемые уровнем 2 кадры нумеруются. Это позволяет подтверждать (кви­тировать) получение каждого кадра. Если обнаруживается ошиб­ка или отсутствие кадра, осуществляется его повторная передача. Кроме того, при работе с подтверждением вводятся специальные процедуры управления потоками, предохраняющие от перегрузки оборудование сети или пользователя. Передача с подтверждением применима только к режиму «точка-точка».

Уровень 3 (сетевой уровень) предполагает использование сле­дующих протоколов:

Протокол сигнализации, определенный в рекомендации 1.451 или Q.931 (эти две рекомендации идентичны). В этом случае SAPI=0, а протокол сигнализации используется для установ­ления и разрушения базовых соединений, а также для пре­доставления дополнительных услуг;

Протокол передачи данных в пакетном режиме, определен­ный в рекомендации Х.25 и рассмотренный в главе 9 данной книги. В этом случае SAPI= 16;

Другие протоколы, которые могут быть определены в буду­щем. В этих случаях для SAPI всякий раз будет устанавли­ваться соответствующее данному протоколу значение.

Протокол сигнализации Q.931 (уровень 3) определяет смысл и содержание сигнальных сообщений и логическую последователь­ность событий, происходящих при создании, в процессе сущест­вования и при разрушении соединений. Функции уровня 3 обес­печивают управление базовым соединением и дополнительными услугами, а также некоторые дополнительные к уровню 2 транс­портные возможности. Примером таких дополнительных транс­портных возможностей является опция перенаправления сигналь­ных сообщений на альтернативный D-канал (если это предусмот­рено) в случае отказа основного D-канала.

Физический уровень протокола DSS-1

Уровень 1 (физический уровень) интерфейса базового доступа определяется в рекомендации 1.430. Как уже упоминалось в пара­графе 2.2 (рис. 2.4), в базовом доступе скорость передачи на уровне 1 равна 192 Кбит/с и обеспечивает формирование двух В-каналов со скоростью передачи данных 64 Кбит/с и одного D-канала со ско­ростью передачи данных 16 Кбит/с. Оставшийся ресурс скорости - 48 Кбит/с - используется для цикловой синхронизации, байтовой синхронизации, активизации и деактивизации связи между терми­налами и сетевым окончанием NT. Длина цикла составляет 48 би­тов, а продолжительность цикла - 250 мкс. Там же, в предыдущей главе, отмечалось, что интерфейс в точке S перед передачей кадров должен проходить фазу активизации. Цель фазы активизации со­стоит в том, чтобы гарантировать синхронизацию приемников на одной стороне интерфейса и передатчиков на другой его стороне, что достигается обменом сигналами, называемыми INFO. Исполь­зуется пять различных сигналов INFO.

Первый, INFO 0, свидетельствует об отсутствии какого-либо активного сигнала, поступающего от приемопередатчиков S-интерфейса, и передается в том случае, если все приемопередатчики деактивизированы. Когда терминалу ТЕ необходимо установить соединение с сетью, он инициирует активизацию S-интерфейса путем передачи сигнала INFO 1 в направлении от ТЕ к NT. В ответ на сигнал INFO 1 сетевое окончание NT передает в направлении к ТЕ сигнал INFO 2. Сигнал INFO 2 соответствует циклу, рассмот­ренному в предыдущей главе (рис. 2.4), со всеми битами В- и D-каналов, имеющими значение 0. Циклы INFO 2 могут пред­усматривать передачу информации в сверхцикловых каналах, что приводит к нескольким разным формам сигнала INFO 2. Для ука­зания незавершенной активизации интерфейса биту А, называе­мому битом активизации, также присваивается значение 0, а за­тем, когда активизация достигнута, - значение 1. Каждый цикл INFO 2 содержит изменения полярности импульсов, создаваемые последним битом D-канала предыдущего цикла и битом цикло­вой синхронизации F текущего цикла, а также изменения поляр­ности, вызываемые битом L (см. рис.2).

Когда в ТЕ достигается цикловая синхронизация, к NT пе­редается сигнал INFO 3. В ответ на информацию о достижении синхронизации из NT передается сигнал INFO 4, который содер­жит данные В- и D-каналов и данные сверхциклового канала. Теперь интерфейс полностью активизирован циклами INFO 3 в направлении от ТЕ к NT и циклами INFO 4 в направлении от NT к ТЕ.

В том случае, когда сеть инициирует соединение с ТЕ, т.е. активизация осуществляется в направлении от NT к ТЕ, последо­вательность обмена сигналами почти такая же, кроме одного мо­мента: NT выходит из исходного состояния, в котором посылался сигнал INFO 0, передавая сигнал INFO 2. Сигнал INFO 1 в этом случае не используется.

Рис. 2. Последовательность сигналов при активизации S-интерфейса: (а) - активизация отТЕ;

(б) - активизация от NT

Уровень LAPD

Протоколы уровня 2 (LAPD - Link Access Procedure on the D-channel) как базового, так и первичного доступа определены в рекомендациях ITU-T 1.440 (основные аспекты) и 1.441 (подроб­ные спецификации). Эти же рекомендации в серии Q имеют но­мера Q.920 и Q.921. Обмен информацией на уровне LAPD осуще­ствляется посредством информационных блоков, называемых кад­рами и схожих с сигнальными единицами ОКС- 7.

Сформированные на уровне 3 сообщения помещаются в ин­формационные поля кадров, не анализируемые уровнем 2. Задачи уровня 2 заключаются в переносе сообщений между пользовате­лем и сетью с минимальными потерями и искажениями. Форматы и процедуры уровня 2 основываются на протоколе управления зве­ном передачи данных высокого уровня HDLC (High-level Data-Link Control procedures), первоначально определенном Международной организацией по стандартизации ISO и образующем подмножест­во других распространенных протоколов: LAPB, LAPV5 и др. Про­токол LAPD, также входящий в подмножество HDLC, управляет потоком кадров, передаваемых по D-каналу, и предоставляет ин­формацию, необходимую для управления потоком и исправления ошибок.

Рис. 3. Формат кадра

Кадры могут содержать либо команды на выполнение дейст­вий, либо ответы, сообщающие о результатах выполнения команд, что определяется специальным битом идентификации коман­да/ответ C/R. Общий формат кадров LAPD показан на рис. 3.

Каждый кадр начинается и заканчивается однобайтовым фла­гом. Комбинация флага (0111 1110) такая же, как в ОКС-7. Имита­ция флага любым другим полем кадра исключается благодаря за­прещению передачи последовательности битов, состоящей из бо­лее чем пяти следующих друг за другом единиц. Это достигается с помощью специальной процедуры, называемой «бит-стаффингом» (bit-stuffing), которая перед передачей кадра вставляет ноль после любой последовательности из пяти единиц, за исключением фла­га. При приеме кадра любой ноль, обнаруженный следом за по­следовательностью из пяти единиц, изымается.

Адресное поле (байты 2 и 3) кадра на рис. 3. содержит иден­тификатор точки доступа к услуге SAPI (Service Access Point Identi­fier) и идентификатор терминала TEI (Terminal Equipment Identifi­er) и используется для маршрутизации кадра к месту его назначе­ния. Эти идентификаторы, определяют соединение и терминал, к которым относится кадр.

Идентификатор пункта доступа к услуге SAPI занимает 6 би­тов в адресном поле и фактически указывает, какой логический объект сетевого уровня должен анализировать содержимое инфор­мационного поля. Например, SAPI может указывать, что содер­жимое информационного поля относится к процедурам управле­ния соединениями в режиме коммутации каналов или к процеду­рам пакетной коммутации. Рекомендацией Q.921 определены зна­чения SAPI, приведенные в табл. 1.

Таблица 1. ЗначенияSAPI

Идентификатор TEI указывает терминальное оборудование, к которому относится сообщение. Код TEI=127 (1111111) указы­вает на вещательную (циркулярную) передачу информации всем терминалам, связанным с данной точкой доступа. Остальные зна­чения (0-126) использются для идентификации терминалов. Диа­пазон значений TEI (табл..2) разделяется между теми термина­лами, для которых TEI назначает сеть (автоматическое назначе­ние TEI), и теми, для которых TEI назначает пользователь (неав­томатическое назначение TEI).

Таблица 2. ЗначенияTEI

При подключении УПАТС (представляющей собой функцио­нальный блок NT2) к АТС ISDN общего пользования с использо­ванием интерфейса PR1 в соответствии с требованиями стандар­тов ETSI, принятых и в России, ТЕ1==0. В этом случае процедуры назначения TEI не применяются.

Бит идентификации команды/ответа C/R (Command/Res­ponse bit) в адресном поле перенесен в DSS-1 из протокола Х.25. Этот бит устанавливается LAPD на одном конце и обрабатывается на противоположном конце звена. Значение C/R (табл..3) классифицирует каждый кадр как командный или как кадр ответа. Если кадр сформирован как команда, адресное поле идентифицирует получателя, а если кадр является ответом, адресное поле иденти­фицирует отправителя. Отправителем или получателем могут быть как сеть, так и терминальное оборудование пользователя.

Таблица 3. БитыC/R в поле адреса

Бит расширения адресного поля ЕА (Extended address bit) слу­жит для гибкого увеличения длины адресного поля. Бит расшире­ния в первом байте адреса, имеющий значение 0, указывает на то, что за ним следует другой байт. Бит расширения во втором байте, имеющий значение 1, указывает, что этот второй байт в адресном поле является последним. Если впоследствии возникнет необходимость увеличить размер адресного поля, значение бита расширения во втором бай­те может быть изменено на 0, что будет указывать на существова­ние третьего байта. Третий байт в этом случае будет содержать бит расширения со значением 1, указывающим, что этот байт являет­ся последним. Увеличение размера адресного поля, таким обра­зом, не влияет на остальную часть кадра.

Два последних байта в структуре кадра на рис. 3. содержат 16-битовое поле проверочной комбинации кадра PCS (Frame check sequence) и генерируются уровнем звена данных в оборудовании, передающем кадр. Это поле имеет ту же функцию, что и поле СВ (контрольные биты) в сигнальных единицах ОКС-7 и позволяет LAPD обнаруживать ошибки в полученном кадре. В поле FSC передается 16-битовая последовательность, биты которой формируются как дополнение для суммы (по модулю 2), в которой: а) первым слагаемым является остаток от деления (по модулю 2) произведения х k (x 15 +x 14 +…+x+l) на образующий поли­ном (х 16 +х 12 +х 5 +1), где k - число битов кадра между последним битом открывающего флага и первым битом проверочной комби­нации, исключая биты, введенные для обеспечения прозрачности;

б) вторым слагаемым является остаток от деления (по модулю 2) на этот образующий полином произведения х 16 на полином, коэф­фициентами которого являются биты кадра, расположенные ме­жду последним битом открывающего флага и первым битом проверочной комбинации, исключая биты, введенные для обеспече­ния прозрачности. Обратное преобразование выполняется уров­нем звена данных в оборудовании, принимающем кадр, с тем же образующим полиномом для адресного поля, полей управления, информационного и FCS. Протокол LAPD использует соглаше­ние, по которому остаток от деления (по модулю 2) произведения х 16 на полином, коэффициентами которого являются биты пере­численных полей и FCS, всегда составляет 0001110100001111 (де­сятичное 7439), если на пути от передатчика к приемнику никакие биты не были искажены. Если результаты обратного преобразова­ния соответствуют проверочным битам, кадр считается передан­ным без ошибок. Если же обнаружено несоответствие результатов, это означает, что при передаче кадра произошла ошибка.

Поле управления указывает тип передаваемого кадра и зани­мает в различных кадрах один или два байта. Существует три кате­гории форматов, определяемых полем управления: передача ин­формации с подтверждением (I-формат), передача команд, реали­зующих управляющие функции (S-формат), и передача информа­ции без подтверждения (U-формат). Табл. 4 содержит сведения об основных типах кад­ров протокола DSS-1.

Рассмотрим эти типы несколько подробнее.

Информационный кадр (I) сопоставим со значащей сигналь­ной единицей MSU в ОКС-7). С по­мощью 1-кадров организуется передача информации сетевого уров­ня между терминалом пользователя и сетью. Этот кадр содержит информационное поле, в котором помещается сообщение сетево­го уровня. Поле управления 1-формата содержит порядковый но­мер передачи, который увеличивается на 1 (по модулю 128) каж­дый раз, когда передается кадр. При подтверждении приема 1-кад­ров в поле управления вводится порядковый номер приема.

Управляющий кадр (S) используется для поддержки функций управления потоком и запроса повторной передачи. S-кадры не имеют информационного поля и сравнимы с сигнальными еди­ницами состояния звена LSSU в ОКС-7 .Например, если сеть временно не в состоянии принимать 1-кадры, пользователю посылается S-кадр «к приему не готов» (RNR). Когда сеть снова сможет принимать 1-кадры, она передает другой S-кадр - «к приему готов» (RR). S-кадр также может использоваться для подтверждения и содержит в этом случае поряд­ковый номер приема, а не передачи.

Таблица 4. Основные типы кадров LAPD

формат Команды Ответы Описание
Информа­ционные кадры (I) Информация - Используется в режиме с подтверждением для передачи нумерованных кадров, содержащих информационные поля с сообщениями уровня 3
Управля­ющие К приему готов (PR-receive ready) К приему готов (RR-receive ready) Используется для указания готовности встречной стороны к приему I-кадра или для подтверждения ранее полученных 1-кадров
кадры (S) К приему не готов (RNR) К приему не готов (RNR) Используется для указания неготовности встречной стороны к приему I-кадра
Отказ/переспрос (REJ-reject) Используется для запроса повторной передачи 1-кадра
Ненумерованная информация (UI-unnumbered information) Используется в режиме передачи без подтверждения
Отключено (DM-disconnected mode)
Ненуме­рованные кадры (U) Установка расширенного асинхронного балансного режима (SABME-set asynchronous balanced mode extended) Используется для начальной установки режима с подтверждением
Отказ кадра (FRMR-frame reject)
Разъединение (DISC-disconnect) Используется для прекращения режима с подтверждением
Ненумерованное подтверждение (UA-unnumbered ask) Используется для подтверждения приема команд установки режима, например, SABME, DISC

Управляющие кадры можно передавать или как командные, или как кадры ответа.

Ненумерованный кадр (U) не имеет аналогов в ОКС-7. В этой группе имеется кадр ненумерованной информации (UI), единст­венный из группы содержащий информационное поле и несущий сообщение сетевого уровня. U-кадры используются для передачи информации в режиме без подтверждения и для передачи некото­рых административных директив. Чтобы транслировать сообще­ние ко всем ТЕ, подключенным к шине S-интерфейса, станция передает кадр UI с ТЕ1==127. Поле управления U-кадров не содер­жит порядковых номеров.

Как следует из вышеизложенного, информационное поле имеется в кадрах только некоторых типов и содержит информа­цию уровня 3, сформированную одной системой, например, тер­миналом пользователя, которую требуется передать другой систе­ме, например, сети. Информационное поле может быть пропуще­но, если кадр не имеет отношения к конкретной коммутируемой связи (например, в управляющих кадрах, S-формат). Если кадр относится к функционированию уровня 2 и уровень 3 не участвует в его формировании, соответствующая информация включается в поле управления.

Биты P/F (poll/final) поля управления идентифицируют груп­пу кадров (из табл.4), что также заимствовано из спецификаций протокола Х.25. Путем установки в 1 бита Р в командном кадре функции LAPD на одном конце звена данных указывают функци­ям LAPD на противоположном конце звена на необходимость от­вета управляющим или ненумерованным кадром. Кадр ответа с F== 1 указывает, что он передается в ответ на принятый командный кадр со значением Р= 1. Оставшиеся биты байта 4 идентифицируют кон­кретный тип кадра в пределах группы.

И в заключение с учетом уже детально проанализированной структуры кадра уровня 2 протокола DSS-1, еще раз рассмотрим оба способа передачи кадров: с подтвержде­нием и без подтверждения.

Передача с подтверждением. Этот способ используется толь­ко в соединениях звена данных, имеющих конфигурацию «точка-точка», для передачи информационных кадров. Он обеспечивает исправление ошибок путем повторной передачи и доставку не со­держащих ошибок сообщений в порядке очередности. Этот спо­соб подобен основному методу защиты от ошибок при передаче значащих сигнальных единиц MSU в системе ОКС-7.

Поле управления информационного кадра имеет подполя «номер передачи» и «номер приема» . Эти подполя сопоставимы с полями FSN, BSN в сигнальных единицах MSU системы ОКС-7 Протокол LAPD присваивает возрастающие порядковые номера передачи N(S) по­следовательно передаваемым информационным кадрам, а имен­но: N(S)=0, 1, 2,... 127, О, 1,... и т.д. Он также записывает переда­ваемые кадры в буфер повторной передачи и хранит эти кадры в буфере вплоть до получения положительного подтверждения их приема.


Похожая информация.


Протокол LAPD (Link Access Procedure on the D-channel) управляет пото­ком кадров, передаваемых по D-каналу, и предоставляет информацию, необхо­димую для управления потоком и исправления ошибок. Спецификации протоко­ла как базового, так и первичного доступа определены в рекомендациях ITU-T 1.440 (основные аспекты) и 1.441 (подробные спецификации). Эти же рекомен­дации в серии Q имеют номера Q.920 и Q.921. Обмен информацией на уровне LAPD осуществляется посредством информационных блоков, называемых кад­рами. Форматы и процедуры LAPD основаны на протоколе управления звеном передачи данных высокого уровня HDLC (High-level Data-Link Control procedures), первоначально определенном Международной организацией по стан­дартизации ISO. Структура кадра LAPD. Кадры содержат либо команды на выполнение дей­ствий, либо ответы, сообщающие о результатах выполнения команд, что опре­деляется специальным битом идентификации команда/ответ C/R. Общий фор­мат кадров LAPD показан на рис. 5.5. Каждый кадр начинается и заканчивается однобайтовым флагом. Комби­нация флага (01111110) такая же, как в HDLC. Подмена флага любым другим полем кадра исключена благодаря процедуре «битстаффинга» (bit-stuffing). Адресное поле (байты 2 и 3) кадра содержит идентификатор точки доступа к услуге SAPI (Service Access Point Identifier) и идентификатор терминала TEI (Terminal Equipment Identifier). Это поле используется для маршрутизации кадра к месту его назначения. Эти идентификаторы определяют соединение и тер­минал, к которым относится кадр. Идентификатор пункта доступа к услуге SAPI занимает 6 бит в адресном поле и фактически указывает, какой логический объект сетевого уровня дол­жен анализировать содержимое информационного поля. Например, SAPI мо­жет указывать, что содержимое информационного поля относится к процеду­рам управления соединениями в режиме коммутации каналов или к процеду­рам пакетной коммутации. Рекомендацией Q.921 определены значения SAPI (табл. 5.1).

и теми, для которых TEI назнача­ет пользователь (неавтоматичес­кое назначение TEI).

Бит идентификации команды/ ответа C/R (Command/Response bit) в адресном поле перенесен в протокол LAPD из протокола Х.25. Этот бит устанавливается LAPD на одном и обрабатывается на противоположном конце звена. Значение C/R (табл. 5.3) классифицирует каж­дый кадр как командный или как кадр ответа. Если кадр сформирован как команда, адресное поле идентифицирует получателя, а если кадр является от­ветом, адресное поле идентифицирует отправителя. Отправителем или полу­чателем могут быть как сеть, так и терминальное оборудование пользователя. Бит расширения адресного поля ЕА (Extended address bit) служит для гибко­го увеличения длины адресного поля. Бит расширения в первом байте адреса, имеющий значение 0, указывает на то, что за ним следует другой байт. Бит расширения во втором байте, имеющий значение 1, указывает, что этот второйбайт в адресном поле является последним. Именно такой вариант приведен на рис. 5.1. Если впоследствии возникнет необходимость увеличить размер ад­ресного поля, значение бита расширения во втором байте может быть измене­но на 0, что будет указывать на существование третьего байта. Третий байт в этом случае будет содержать бит расширения со значением 1, указывающим, что этот байт является последним. Увеличение размера адресного поля, таким образом, не влияет на остальную часть кадра. Два последних байта в структуре кадра содержат 16-битовое поле прове­рочной комбинации кадра FCS (Frame check sequence) и генерируются уров­нем звена данных в оборудовании, передающем кадр. Это поле позволяет про­токолу LAPD обнаруживать ошибки в полученном кадре. В поле FCS передается 16-битовая последовательность, биты которой формируются как дополнение для суммы (по модулю 2), в которой: а) первым слагаемым является остаток от деления (по модулю 2) произве­дения х*(х 15 + х 14 + ... + х + 1) на образующий полином (х 16 + х 12 + х 5 + 1), где к - число битов кадра между последним битом открывающего флага и пер­вым битом проверочной комбинации, исключая биты, введенные для обеспе­чения прозрачности; б) вторым слагаемым является остаток от деления (по модулю 2) на этот образующий полином произведения х 16 на полином, коэффициентами которого являются биты кадра, расположенные между последним битом открывающе­го флага и первым битом проверочной комбинации, исключая биты, введенные для обеспечения прозрачности. Обратное преобразование выполняется уровнем звена данных в оборудова­нии, принимающем кадр, с тем же образующим полиномом для адресного поля, полей управления, информационного и FCS. Протокол LAPD использует согла­шение, по которому остаток от деления (по модулю 2) произведения х 16 на по­лином, коэффициентами которого являются биты перечисленных полей и FCS, всегда составляет 0001110100001111 (десятичное 7439), если на пути от пере­датчика к приемнику никакие биты не были искажены. Если результаты обрат­ного преобразования соответствуют проверочным битам, кадр считается пе­реданным без ошибок. Если же обнаружено несоответствие результатов, это означает, что при передаче кадра произошла ошибка. Поле управления указывает тип передаваемого кадра и занимает в раз­личных кадрах один или два байта. Существует три типа форматов, определя­емых полем управления: передача информации с подтверждением (1-фор­мат), передача команд, реализующих управляющие функции (S-формат), и передача информации без подтверждения (U-формат). В табл. 5.4 приведе­ны сведения об основных типах кадров протокола LAPD.

Рассмотрим эти типы несколько подробнее. Информационный кадр (1-кадр) - с его помощью организуют передачу ин­формации сетевого уровня между терминалом пользователя и сетью. Этот кадр содержит информационное поле, в котором помещено сообщение сетевого уров­ня. Поле управления 1-кадра содержит порядковый номер передачи (N/S), ко­торый увеличивается на 1 (по модулю 128) для каждого передаваемого кадра. При подтверждении приема 1-кадров в поле управления вводится порядковый номер приема (N/R). Управляющий кадр (S-кадр) необходим для поддержки функций управления потоком и запроса повторной передачи. S-кадры не имеют информационного поля. Например, если сеть временно не в состоянии принимать 1-кадры, пользо­вателю посылается S-кадр «к приему не готов» (RNR). Когда сеть снова мо­жет принимать 1-кадры, она передает другой S-кадр - «к приему готов» (RR). S-кадр также можно использовать для подтверждения в этом случае он содер­жит порядковый номер приема, а не передачи. Управляющие кадры передают как командные или как кадры ответа. Ненумерованный кадр (U-кадр). Среди ненумерованных кадров имеется кадр ненумерованной информации (UI), единственный, содержащий информа­ционное поле и несущий сообщение сетевого уровня. U-кадры используют для передачи информации в режиме без подтверждения и некоторых администра­тивных директив. Чтобы транслировать сообщение ко всем терминалам, под­ключенным к шине S-интерфейса, станция передает кадр UI с TEI = 127. Поле управления U-кадров не содержит порядковых номеров. Информационное поле предусмотрено в кадрах только некоторых типов. В нем заключена информация сетевого уровня, сформированная одной системой, например, терминалом пользователя, которую необходимо передать другой си­стеме, например сети. Информационное поле может быть пропущено, если кадр не имеет отношения к конкретной коммутируемой связи (например, в управля­ющих кадрах, S-формат). Если кадр относится к канальному уровню и сетевой уровень не участвует в его формировании, соответствующая информация вклю­чается в поле управления. Биты P/F (poll/final) поля управления идентифицируют группу кадров (см. табл. 5.4), что также заимствовано из спецификаций протокола HDLC. Путем установки в «1» бита Р в командном кадре функции LAPD на одном конце звена данных указывают функциям LAPD на противоположном конце звена на необходимость ответа управляющим или ненумерованным кадром. Кадр отве­та с F = 1 указывает, что он передается в ответ на принятый командный кадр со значением Р = 1. Оставшиеся биты байта 4 идентифицируют конкретный тип кадра в пределах группы. Передача с подтверждением. Этот способ используют для передачи ин­формационных кадров только в соединениях звена данных, имеющих конфигу­рацию «точка-точка». Он обеспечивает исправление ошибок путем повтор­ной передачи и доставку не содержащих ошибок сообщений в порядке очередности. Поле управления информационного кадра имеет подполя «номер передачи» N(S) и «номер приема» N(R). Эти подполя аналогичны одноименным полям в HDLC. Протокол LAPD присваивает по модулю 128 возрастающие порядко­вые номера передачи N(S) последовательно передаваемым информационным кадрам. Он также записывает передаваемые кадры в буфер повторной переда­чи и хранит их в буфере до получения положительного подтверждения их приема.

Рассмотрим передачу информационных кадров с исправлением ошибок от терминала к сети (рис. 5.6). Все поступающие в сеть кадры проверяются на наличие ошибок, а затем в свободных от ошибок информационных кадрах про­веряется порядковый номер. Если значение N(S) выше (по модулю 128) на еди­ницу, чем N(S) последнего принятого информационного кадра, новый кадр счи­тается следующим по порядку и поэтому принимается, а его информационное поле пересылается конкретной функции сетевого уровня. После этого сеть под­тверждает прием информационного кадра своим исходящим кадром с номе­ром приема N(R), значение которого на единицу больше (по модулю 128), чем значение N(S) в последнем принятом информационном кадре. Предположим, что последний принятый информационный кадр имел номер N(S) = 5 и что информационный кадр с номером N(S) = 6 передан с ошибкой, в результате которой отбракован функциями LAPD на стороне сети. Следующий информационный кадр с N(S) = 7 успешно проходит проверку на ошибки, но поступает в сеть с нарушением очередности и отбрасывается ею при проверке порядка следования. Тоща сеть передает кадр отказа (REJ) с номером N(R) = 6, который запрашивает повторную передачу информационных кадров из буфера повторной передачи терминала, начиная с кадра с N(S) = 6. Сетевая сторона продолжает отбрасывать информационные кадры при проверке их на порядок следования, пока не примет повторно переданный кадр с номером N(S) = 6. Нумерация кадров при передаче с подтверждением - одна из важней­ших функций протокола LAPD. При выполнении этой процедуры важное значе­ние имеет параметр к- число неподтвержденных квитируемых кадров. Пере­датчик должен прекратить работу, когда разница между его собственным значением N(S) (числом переданных кадров I) и значением N(R) (числом под­твержденных кадров I) превысит параметр, обозначаемый к. Значение к уста­навливается в соответствии со спецификой использования звена и скоростью передачи в нем: к = 1 - для сигнализации базового доступа BRA при скорости.D-канала 16 кбит/с, к = 3 - для пакетной передачи при скорости 16 кбит/с, к - 7 - для сигнализации первичного доступа PRA при скорости D-канала 64 кбит/с. Два потока сообщений от терминала к сети и в обратном направлении для соединения «точка-точка» независимы друг от друга и от потоков сообщений в других соединениях «точка-точка» в том же D-канале. В D-канале с п соеди­нениями типа «точка-точка» могут присутствовать 2п независимых последо­вательностей N(S)/N(R). Процедура подтверждаемой передачи информации (рис. 5.7). Рассмот­рим случай, когда необходимо начать передачу информации уровня 3 от терми­нала пользователя к сети. Инициатором данной процедуры является уровень 3 на стороне пользователя, который выдает примитив запроса соединения DISESTABLISH. По этому запросу уровень 2 на стороне пользователя форми­рует управляющий кадр установки расширенного асинхронного балансного ре­жима (SABME - Set Asynchronous Balanced Mode Extended).

Кадр SABME пересылается к сети через уровень 1. При получении кадра SABME уровнем 2 на стороне сети проверяются условия, необходимые для установки режима подтверждаемой передачи информации (например, чтобы убедиться, что соот-


Рис. 5.7. Процедура подтверждаемой передачи

ветствующее оборудование доступно). Если все условия выполнены, уровень 2 на стороне сети посылает уровню 3 примитив индикации запроса соединения, чтобы указать, что устанавливается режим подтверждаемой передачи инфор­мации. Средствами уровня 2 сеть возвращает пользователю ненумерованное подтверждение. При получении этого подтверждения терминалом пользовате­ля на уровень 3 передается примитив подтверждения установления соедине­ния, указывающий, что можно начинать подтверждаемую передачу информа­ции. Теперь между пользователем и сетью можно осуществить передачу информации с помощью 1-кадров. Эта информация направляется уровнем 3 к уровню 2 в примитиве запроса передачи данных DLJDATA. Данные помещаются в информационное поле 1-кадра и передаются от пользователя к сети через уровень 1. При получении уровнем 2 на стороне сети 1-кадра данные извлекаются из информационного поля и передаются к уровню 3 в примитиве индикации приема данных. В зави­симости от содержимого полученного 1-кадра сеть посылает в ответ пользова­телю либо 1-кадр, либо управляющий кадр готовности к приему. Оба кадра содержат подтверждение, что 1-кадр от пользователя был успешно принят. Каждый 1-кадр содержит в поле управления порядковые номера передачи и приема. Процедура обнаружения потерь работает в обоих направлениях. В ка­честве примера на рис. 5.6 была рассмотрена передача необходимого сетево­му уровню числа информационных кадров, включая передачу кадров 5, 6 и 7. Когда обмен 1-кадрами, показанный на рис. 5.6, заканчивается, происходит по­сылка команды разъединения DISC, за которой следует ответ DM, подтверж­дающий разъединение. На рис. 5.7 уровень 3 на стороне пользователя отправ­ляет уровню 2 примитив запроса освобождения DL_RELEASE, а уровень 2 формирует кадр разъединения, который передается через уровень 1 уровню 2 на стороне сети. При получении кадра разъединения уровнем 2 на стороне сети уровню 3 выдается примитив индикации освобождения, а пользователю воз­вращается кадр ненумерованного подтверждения. При получении кадра нену­мерованного подтверждения уровнем 2 на стороне пользователя уровню 3 вы­дается примитив подтверждения освобождения для завершения процедуры освобождения. Передача неподтверждаемых сообщений. Управляющие кадры S и не­нумерованные кадры U не содержат подполя N(S). Они принимаются получа­телем, если получены без ошибок, и на них не отправляется подтверждение. Управляющие кадры содержат поле N(R) для подтверждения принятых ин­формационных кадров. Ненумерованные информационные кадры UI не содержат ни поля N(S), ни поля N(R), поскольку они передаются в вещательном режиме с TEI = 127, а возможность координировать порядковые номера передачи и приема для груп­повых функций во всех терминалах, подключенных к одному S-интерфейсу, от­сутствует. Процедура неподтверждаемой передачи информации. Рассмотрим случай, когда необходима передача информации от функций уровня 3 на сторо­ не сети к функциям уровня 3 в терминале пользователя. Функции уровня 3 на стороне сети передают к уровню 2 примитив запроса передачи данных без подтверждения DL_UNIT DATA. Уровень 2 формирует кадр ненумерованной информации (UI - Unnumbered Information), содержащий в информационном поле информацию, которую надо передать. Этот кадр и передается через уро­вень I к функциям уровня 2 в терминале пользователя. Если необходима веща­тельная (циркулярная) передача кадра всем терминалам, TEI в адресном поле присваивается значение 127. Если же обращение происходит к одному опреде­ленному терминалу, т.е. необходим режим «точка-точка», тогда TEI присваи­вается значение от 0 до 126, совпадающее с TEI, назначенным для этого тер­минала, например, TEI = 7. При получении кадра UI терминалом пользователя информация, содержащаяся в информационном поле, доставляется из уровня 2 в уровень 3 с помощью примитива индикации приема данных без подтвержде­ния. При такой неподтверждаемой передаче информации в уровне 2 отсутствует процедура защиты от ошибок. Следовательно, решение о логическом восста­новлении кадра в случае его потери или искажения возложено на функции уровня 3.

Рассмотрим подробнее использование управляющих кадров: кадр готовно­сти к приему RR, сообщающий о готовности принимать информационные кад­ры; кадр неготовности к приему RNR, сообщающий о том, что принимать ин­формационные кадры временно нельзя, но прием управляющих кадров возможен; кадр отказа REJ, указывающий, что поступивший информационный кадр от­брошен. На рис. 5.8 показаны несколько примеров, которые иллюстрируют ис­пользование битов C/R, Р и F. На рис. 5.8, а уровень 2 на стороне сети получил информационный кадр с нарушением порядка очередности и отбрасывает его с помощью команды RE J, в которой бит Р имеет значение 0 (подтверждения не требуется). N(R) = М указывает, что последний принятый информационный кадр имел N(S) = М - 1. Терминал повторяет передачу информационных кадров из своего буфера по­вторной передачи, начиная с кадра, для которого N(S) = М. На рис. 5.8, б рассмотрена та же ситуация, за исключением того, что в командном кадре REJ бит Р =1. Этим передается указание терминалу пользо­вателя подтвердить кадр. Терминал пользователя сначала передает кадр от­вета RR или RNR (C/R = 1, F = 1), а затем начинает повторную передачу ин­формационных кадров. На рис. 5.8, в сетевая сторона указывает с помощью командного кадра RNR, что она не может принимать информационные кадры. Сторона пользователя приостанавливает передачу информационных кадров и запускает таймер. Если терминал получает кадр RR до срабатывания таймера, то он возобновляет передачу или повторную передачу информационных кадров. Если таймер сра­ботал, а кадр RR не получен, терминал пользователя передает кадр команды (C/R = 1) с Р = 1. Этим дается указание сетевой стороне передать, в свою очередь, командный кадр. В данном примере сетевая сторона отвечает кад­ром RR, указывая, что она готова снова принимать информационные кадры и что номер последнего принятого кадра N(S) = М -1. Затем сторона терминала возобновляет передачу информационных кадров, начиная ее кадром с номером N(S) = М. Если ответом сетевой стороны будет кадр RNR, то сторона пользо­вателя перезапустит свой таймер и снова будет ожидать кадр RR. Если сете­вая сторона остается неготовой к приему после нескольких срабатываний тай­мера, то сторона пользователя передает решение вопроса в более высокую инстанцию - к соответствующей функции сетевого уровня. Процедуры управления TEI. Для протокола LAPD определены процеду­ры управления TEI, т. е. процедуры его назначения, контроля и отмены. Для соединений «точка-точка» в терминале запоминается «свой» TEI и проверяет­ся TEI в поле адреса принимаемых кадров, чтобы определить, не предназна­чен ли кадр этому терминалу. Терминал также вводит свой TEI в адресные поля передаваемых им кадров. Терминалы (ТЕ) подразделяются на терминалы с неавтоматическим и ав­томатическим механизмом назначения TEI. ТЕ первого типа ориентированы на длительное подключение к одной цифровой абонентской линии, с постоянно активным физическим уровнем. Эти терминалы имеют ряд переключателей, положение которых определяет значение TEI. Переключатели устанавливает технический персонал при инсталляции ТЕ, и их положение не меняется, пока ТЕ подключен к этой цифровой абонентской линии. ТЕ такого типа имеют зна­чения от 0 до 63.каждом перемещении неудобно, поэтому для мобильных ТЕ применяется ав­томатическое назначение TEI (в диапазоне 64-126), а также его проверка и отмена, для чего и используются упомянутые выше процедуры управления TEI. Этими процедурами предусмотрены сообщения следующих типов:


Запрос ID. Сообщение передается мобильным ТЕ, когда необходимо, что­бы сеть назначила для него TEI. ID назначен. Это ответ сети на запрос ГО. Он содержит назначенный TEI. Отказ в назначении ID. Это ответ сети, отвергающий запрос ГО. Запрос проверки ID. Это команда от сети для проверки назначенного зна­чения TEI. Ответ проверки ID. Это ответ мобильного ТЕ на запрос-проверки ГО. Отмена ID. Эта команда передается от сети к ТЕ, чтобы отменить назна­ченный ранее TEI. Все сообщения передаются в кадрах UI с SAPI = 63. Информационное поле кадров UI показано на рис. 5.9. Код в байте 1 указывает, что это сообщение управления TEI. Код типа сообщения находится в байте 4 (табл. 5.5). Сообще­ние содержит параметры R1 (ссылочный номер) и Ai (индикатор действия).

Основное описание протоколов сети GSM дано в документах ETSI. Эти документы представляют собой некоторые группы, систематизированные по версиям.

CM Connection Management Управление соединением
MM Mobility Management Управление мобильностью
RRM Radio Resources Management Управление радиоресурсом
LAPD Link Access Protocol D Процедура доступа к звену передачи данных по каналу D (m - обозначает воздушный интерфейс)
BTSM Base Transceiver Station Management Управление базовой приемопередающей станцией
BSSAP BSS Application Part Прикладная часть (подсистема) системы базовой станции
SCCP Signaling Connection Control Part каналов сигнализации
MTP Massage Transfer Part Подсистема передачи сообщений

Рассмотренные выше функции (registration), (authentication), маршрутизации вызова (call routing), (handover) выполняются подсистемой сети, главным образом используя протоколы сигнализации системы мобильной связи, основанные на протоколах системы ОКС-7. Структура этих протоколов показана на рисунке.

Протоколы в GSM разделены на три уровня в зависимости от интерфейса, как показано на рисунке.

Участок «мобильная станция - базовая станция» использует следующие уровни. Уровень 1 - физический уровень, который использует структуры канала, рассмотренные выше, по «воздушному интерфейсу». Уровень 2 - уровень звена передачи данных по интерфейсу Um, уровень звена передачи данных - это модифицированная версия процедуры LAPD, применяемой в ISDN, называемая LAPDm. Уровень 3 - протокол, использующий также модифицированную версию LAPD, самостоятельно разделен на три следующих подслоя.

Управление радиоресурсами (RRM - Radio Resources Management) - управляет первоначальной установкой оконечных устройств, включением радио- и фиксированных каналов, их обслуживанием, а также обеспечивает процедуру хэндовера.

Управление передвижением (ММ - Mobility Management) - управляет обновлением местоположения и процедурами регистрации, а также защитой и аутентификацией.

Управление соединением (СМ - Connection Management) - осуществляет общий процесс управления установлением соединения и сигнализацией и управляет дополнительными услугами, а также службой передачи коротких сообщений.

При взаимодействии базовой приемопередающей станции (BTS) с контроллером базовой станции (BSC) используется интерфейс Abis, который обеспечивает управление базовой приемопередающей станцией (BTSM - Base Transceiver Station Management).

Передача сигналов между различными объектами в фиксированной части сети (интерфейс А) использует следующие протоколы: на уровне 1 - МТР (Message Transfer Part - подсистема передачи сообщений); на уровне 2 - SCCP (Signaling Connection Control Part - подсистема управления соединением канала сигнализации), принадлежащий системе сигнализации ОКС-7. На уровне 3 применяют перечисленные выше протоколы GSM - ММ и СМ.

Подсистема третьего уровня BSSAP (BSS Application Part - прикладная часть системы базовой станции) предназначена для связи контроллера базовой станции (BSS) с центром коммутации мобильной связи (MSC). Спецификация MAP весьма сложна и изложена на более чем 500 страницах, это - один из самых длинных документов в рекомендациях GSM.

Современные сети мобильно связи очень удобно использовать для прослушивания и шпионажа. На рынке появилось множество устройств, позволяющих вести дистанционное аудионаблюдение. Так, например GSM жучок с голосовой активацией , можно использовать в качестве сигнализации. Когда в радиусе действия аппарата будет зарегистрирован шум, устройство немедленно активируется и передаст сообщение владельцу.

Протокол, используемый для уровня 2 в D-канале при выполнении процедуры установления соединения, называется LAPD (L ink A ccess P rocedure on the D -channel). Данный протокол основывается на протоколе LAPB (рекомендация MKKTT X.25). Однако особенности LAPD дают ему ряд важных преимуществ. Прежде всего это мультиплексирование пакетов, имеющих собственные адреса 2-го уровня, позволяющее существовать множеству процедур доступа на одном физическом соединении. Это позволяет нескольким терминалам (до 8) "делить" сигнальный канал между собой. Формат D-канального сигнального сообщения представлен на рис.4

  • Flag

    Каждая сигнальная единица начинается и заканчивается флагом, он отмечает начало сигнальной единицы и ее конец. Флаг - это последовательность битов 01111110 . Флаг, предшествующий адресному полю, называется открывающим флагом; флаг, следующий за полем FCS - закрывающим флагом.

  • Address

    Адресное поле состоит из двух байт. В нем определяется получатель управляющей сигнальной единицы и передатчик посланной единицы (см. рис. 5).

    В адресное поле входят бит расширения (EA), индикатор команда/ответ (C/R), идентификатор пункта, обеспечивающего услуги звена передачи данных второго уровня (SAPI), индикатор терминального окончания (TEI).

    Бит расширения адресного поля (EA)

    "1" указывает на то, что байт - последний в адресном поле.

    Индикатор команда/ответ (C/R)

    Индикатор указывает, является ли данный пакет командой или ответом на команду. Если пользователь посылает команду, то C/R установлен в "0"; если ответ - в "1". Со стороны сети наоборот: "1" - команда, "0" - ответ.

    Индикатор пункта, обеспечивающего услуги звена передачи данных (SAPI)

    Указывает класс передаваемой информации. Эти классы информации используются для распознавания сигнальной информации, административной информации 2-го уровня и пакетов пользовательской информации.
    Например, цифровые телефоны и терминалы X.25 могут быть подключены к одному стыку S0. Разные типы терминалов имеют разные типы доступа и могут иметь выход на различные сети. Пакеты, передаваемые разными типами терминалов (работающих по разным протоколам), идентифицируются с помощью индикатора SAPI. Шесть бит адресного поля, отведенные под SAPI, могут определить 64 класса информации:

    Индикатор терминального окончания (TEI)

    Ввиду того, что к одному блоку сетевого окочания может быть подключено несколько пользовательских устройств, станция ISDN присваивает каждой из них уникальный номер, который называется TEI (terminal equipment identifier).

    Комбинация SAPI и TEI идентифицирует процедуры звена передачи данных и обеспечивает уникальность адреса для уровня 2. Терминал будет использовать этот адрес во всех передаваемых им пакетах и принимать только те пакеты, которые имеют соответствующий ему адрес.
    Например, пакет, несущий информацию от процедур управления телефонным вызовом, помечается SAPI, как принадлежащий телефонии, и все телефонное оборудование пользователя будет проверять его, но только то терминальное оборудование, чей адрес (TEI) указан в данном пакете, примет его для обработки вторым и третьим уровнем.
    Не должно существовать двух одинаковых TEI. Для этого сеть осуществляет специальное управление распределением TEI и следит за их правильным использованием. Семь бит адресного поля, используемые для TEI, позволяют назначить 128 идентификаторов терминальных окончаний:

    Не автоматически присваемые TEI выбираются и распределяются пользователем. Автоматически присваемые TEI выбираются и распределяются сетью. Общие TEI всегда распределены и обычно называются как TEI для общего оповещения.
    Терминалам, которые используют TEI из диапазона от 0 до 63, нет необходимости обмениваться информацией с сетью до начала установления соединения вторым уровнем. Однако правило, что все терминалы пользователя должны иметь различные TEI, действует и по отношению к ним. Пользователь должен сам следить, чтобы не было двух терминалов с одинаковыми, не автоматически присваемыми TEI.
    Терминалы, использующие TEI из диапазона от 64 до 126, не могут установить соединение второго уровня до того, как запросят у сети TEI. В этом случае обязанность сети распределять TEI так, чтобы не было повторений.
    Общие TEI используются для оповещения всех терминалов с одинаковыми SAPI. Например, оповещение всех телефонов о пришедшем вызове.

  • Control field (поле управления)

    Поле управления определяет тип D-канального сообщения, которое может быть командой или ответом на команду. Оно может состоять из одного или двух байтов, размер его зависит от формата. Существует три типа форматов поля управления: передача информации о номере пакета (I-формат ), функции надзора (S-формат ), неномерованная информация и функции управления (U-формат ).

    где:
    N(S) - номер посланного сообщения; N(R) - номер принятого сообщения; P - указывает на подтверждение приема пакета уровнем 2 ("1" - пакет принят); S - бит функции супервизора; M - бит модификации; P/F - P используется как указатель подтверждения приема в командах, F используется как указатель передачи пакета в откликах (ответах); X - зарезервирован и установлен в "0".

    Information transfer (I) format

    I-формат используется при передаче информации между третьими уровнями.

    Supervisory (S) format

    S-формат используется для выполнения функций управления звеном передачи данных, таких как обозначение готовности звена передачи данных к приему пакета I-формата, подтверждение получения пакета I-формата, запрос на повтор пакетов I-формата (начиная с номера N(R)), запрос на временное прекращение посылки пакетов I-формата.

    Unnumbered (U) format

    U-формат используется для обеспечения дополнительных функций контроля за звеном передачи данных и для передачи информации, не требующей подтверждения.
    Различные комбинации значений битов S и M определяют различные типы сообщений формата S и U.

  • Information (информационное поле)

    Информационное поле может и не присутствовать в пакете (в этом случае пакет не несет в себе информацию третьего уровня, а используется вторым уровнем, например, для управления звеном передачи данных); если же оно присутствует, то находится за полем управления. Размер информационного поля может достигать 260 байт.

  • FCS (поле контрольных бит)

    Ввиду того, что при передаче по сети пакеты могут искажаться шумами на первом уровне, в каждом из них присутствует поле контрольных битов (F rame C heck S equence field). Оно состоит из 16 проверочных битов и используется для проверки ошибок в принимаемом пакете. Если пакет принят с неправильной последовательностью проверочных битов, то он сбрасывается.