Тарифы Услуги Сим-карты

Частоты ррс. Современная радиорелейная связь. Классификация радиорелейных линий связи

Радиорелейная связь

Башня радиорелейной связи

Радиореле́йная свя́зь (от англ. Relay - передавать, транслировать) - один из видов радиосвязи , образованной цепочкой приёмо-передающих (ретрансляционных) радиостанций . Наземная радиорелейная связь осуществляется обычно на деци - и сантиметровых волнах (от сотен мегагерц до десятков гигагерц).

По назначению радиорелейные системы связи делятся на три категории, каждой из которых на территории России выделены свои диапазоны частот :

  • местные линии связи от 0,39 ГГц до 40,5 ГГц
  • внутризоновые линии от 1,85 ГГц до 15,35 ГГц
  • магистральные линии от 3,4 ГГц до 11,7 ГГц

Данное деление связано с влиянием среды распространения на обеспечение надёжности радиорелейной связи. До частоты 12ГГц атмосферные явления оказывают слабое влияние на качество радиосвязи, на частотах выше 15ГГц это влияние становится заметным, а выше 40ГГц определяющим, кроме того, на частотах выше 40ГГц значительное влияние на качество связи оказывает затухание в атмосфере Земли.

Атмосферные потери, в основном, складываются из потерь в атомах кислорода и в молекулах воды . Практически полная непрозрачность атмосферы для радиоволн наблюдается на частоте 118.74 ГГц (резонансное поглощение в атомах кислорода), а на частотах больше 60 ГГц погонное затухание превышает 15 дБ/км. Ослабление в водяных парах атмосферы зависит от их концентрации и весьма велико во влажном теплом климате и доминирует на частотах ниже 45 ГГц.

Также отрицательно на радиосвязь влияют гидрометеоры, к которым относятся капли дождя, снег, град, туман и пр. Влияние гидрометеоров заметно уже при частотах больше 6 ГГц, а в неблагоприятных экологических условиях (при наличии в атмосферных осадках металлизированной пыли, смога , кислот или щелочей) и на значительно более низких частотах.

Принципы построения аппаратуры РРЛ

Аппаратура РРЛ строится обычно по модульному принципу. Функционально выделяют модуль стандартных интерфейсов, обычно включающих в себя один или несколько интерфейсов PDH (E1, E3), SDH (STM-1), Fast Ethernet или Gigabit Ethernet или сочетание перечисленных интерфейсов, а также интерфейсы управления и мониторинга РРЛ (RS-232 и др.) и интерфейсы синхронизации. Задача модуля стандартных интерфейсов заключается в коммутации интерфейсов между собой и другими модулями РРЛ. Конструктивно модуль стандартных интерфейсов может представлять собой один блок или состоять из нескольких блоков, устанавливаемых в единое шасси. В технической литературе модуль стандартных интерфейсов обычно называют блоком внутреннего монтажа (т.к. обычно подобный блок устанавливается в линейно-аппаратном зале или в телекоммуникационном вагончике). Потоки данных от нескольких стандартных интерфейсов объединяются в блоке внутреннего монтажа в единый кадр. Далее к полученному кадру добавляется служебные каналы, необходимые для управления и мониторинга РРЛ. Суммарно все потоки данных образуют радиокадр. Радиокадр от блока внутреннего монтажа как правило на промежуточной частоте передается к другому функциональному блоку РРЛ - радиомодулю. Радиомодуль выполняет помехоустойчивое кодирование радиокадра, модулирует радиокадр согласно используемому виду модуляции, а также преобразует суммарный поток данных с промежуточной частоты на рабочую частоту РРЛ. Кроме того часто радиомодуль выполняет функцию автоматической регулировки усиления мощности передатчика РРЛ. Конструктивно радиомодуль представляет собой один герметичный блок, имеющий один интерфейс, соединяющий радимодуль с блоком внутреннего монтажа. В технической литературе радиомодуль обычно называют блоком наружного монтажа, т.к. в большинстве случаев радиомодуль устанавливается на радиорелейной башне или мачте в непосредственной близости от антенны РРЛ. Расположение радиомодуля в непосредственной близости от антенны РРЛ обычно обусловлено стремлением уменьшить затухание высокочастотного сигнала в различных переходных волноводах (для частот больше 6 - 7 ГГц) или коаксиальных кабелях (для частот меньших 6 ГГц).

В устаревших на данный момент аналоговых РРЛ, а также магистральных цифровых РРЛ как блоки со стандартными интерфейсами, так и радиомодули обычно устанавливаются в линейно-аппаратном зале. Это связано с реализацией сложных схем резервирования N + 1, когда нет возможности расположить делитель мощности с одной антенны на несколько радиомодулей в непосредственной близости от антенны из-за громоздкости делителя мощности. В этом случае радиомодули и антенну соединяет волновод, проложенный от линейно-аппаратного зала до места крепления антенны на радиорелейной башне.

Так же распространен вид цифровых РРЛ, в котором конструктивно совмещается модуль стандартных интерфейсов и радиомодуль в виде одного герметичного блока, имеющего несколько стандартных интерфейсов, разъем питания и волноводный разъем для непосредственного крепления к антенне.

Конфигурации и методы резервирования

На наиболее важных направлениях с целью уменьшения неготовности интервалов РРЛ применяют различные методы резервирования оборудования РРЛ. Обычно конфигурации с резервированием оборудования РРЛ обозначают в виде суммы "N+M", где N обозначает общее количество стволов РРЛ, а M - количество зарезервированных стволов РРЛ. После суммы добавляют аббревиатуру HSB, SD ил FD, обозначающую метод резервирования стволов РРЛ.

Уменьшение коэффициента неготовности достигается с помощью дублирования функциональных блоков РРЛ или использованием отдельного резервного ствола РРЛ.

Конфигурация 1+0

Конфигурация оборудования РРЛ с одним стволом без резервирования.

Конфигурация N+0

Конфигурация оборудования РРЛ с N стволами без резервирования. Конфигурация N+0 представляет собой несколько частотных стволов РРЛ или стволов с разной поляризацией, работающих через одну антенну. В случае использования нескольких частоных стволов разделение стволов осуществляется с помощью делителя мощности и частотых полосовых фильтров. В случае использования стволов РРЛ с разной поляризацией разделение стволов осуществляется применением специальных антенн, поддерживающими прием и передачу сигналов с разными поляризациями (например, кроссполяризационных антенн, имеющих одинаковый коэффициент усиления для сигнала с горизонтальной и вертикальной поляризацией).

Конфигурация N+0 не обеспечивает резервирования РРЛ, каждый ствол представляет собой отдельный физический канал передачи данных. Данная конфигурация обычно используется для увеличения пропускной способности РРЛ. В оборудовании РРЛ отельные физические каналы передачи данных могут быть объединены в один логический канал.

Конфигурация N+1 HSB (Hot StandBy)

Конфигурация оборудования РРЛ с N стволами и одним резервным стволом, находящимся в "горячем" резерве. Фактически резервирование достигиется путем дублирования всех или части функциональных блоков РРЛ. В случае выхода одного из блоков РРЛ из строя, блоки, находящиеся в "горячем" резерве замещаю неработоспособные блоки.

Конфигурация N+M HSB (Hot StandBy)

Конфигурация оборудования РРЛ с N стволами и M резервным стволом, находящимися в "горячем" резерве.

Конфигурация N+1 SD (Space Diversity)

Конфигурация N+M SD (Space Diversity)

Конфигурация N+1 FD (Frequency Diversity)

Конфигурация N+M FD (Frequency Diversity)

Кольцевая топологоя построения РРЛ

Построенные интервалов РРЛ по кольцевой топологии является одним из самых надежных способов резервирования, даже если все интервалы РРЛ в кольце работают в конфигурации 1+0. Тем не менне существуют несколько правил пострения кольцевой топологии интервалов РРЛ: количество пролетов в кольце должно быть не менее четырех, а также угол между соседними интервалами РРЛ должен быть больше 90° (с целью уменьшения влияния гидрометеоров на соседние интервалы РРЛ).

Как правило в реальных сетях, состоящей из интеравлов РРЛ, комбинируют различные методы резервирования с целью увеличения надежности сети.

Технологии, используемые в РРЛ

Цифровые РРЛ используются не только для организации PDH и SDH линий связи, а также для организации Ethernet линий со скоростью передачи до 2,5 Гбит/с связи без использования таких технилогий, как EoPDH, PoSDH. Передача Ethernet кадров без необходимости инкапсуляции их TDM кадры (потоки E1 или E3, фреймы SDH и т.п) возможна благодаря использованию пакетного радиокадра вместо TDM радиокадра в радиоканале. Согласно технологиям, используемым для организации радиокадров различают следующие виды цифровых РРЛ:

  • пакетные РРЛ
  • гибридные РРЛ
  • TDM РРЛ

К пакетным относят цифровые РРЛ с пакетным радиокадром. Для передачи TDM потоков используются псевдопроводные технологии передачи данных . За счет использования пакетного радиокадра возможно применение механизмов QoS над потоками данных, передаваемых через пакетные РРЛ. Так же, в пакетных РРЛ наиболее часто используется адаптивная модуляци, обычно сочетаемая с QoS .

Энергетические и качественные показатели

Основным документов для расчёта энергетических и качественных показателей РРЛ прямой видимости на территории

Отечественной радиорелейной промышленности более 50 лет. За время своего развития отрасль вышла на ожидаемые позиции. Сегодня радиорелейные каналы (РРЛ) отлично зарекомендовали себя в обеспечении удаленных районов с низкой инфраструктурой, охвате больших пространств и местностей со сложной структурой геологии. К числу заметных отличий от проводной технологии добавился более низкий бюджет оснащения.

Радиорелейная связь относится к беспроводным каналам связи, но их не нужно путать с известным WI —FI . Отличия следующие:

  • В РРЛ создаются резервные каналы и применяется агрегирование. Теоретически, понятие дальности связи к радиорелейным станциям не применяется, так как расстояние ретрансляции зависит от количества вышек;
  • Высокая пропускная способность;
  • Работа в полном канальном дуплексе;
  • Использование собственных (локальных) диапазонов и высокоэффективных модуляций.

Применение радиорелейных линий связи

Радиорелейные линии связи находят широкое применение в различных отраслях промышленности. В общем случае беспроводные каналы заменяют проводные сети многоканальной телефонной связи. Лидером по протяженности радиорелейных линий связи остается Киргизия. Использование РРЛ обусловлено преобладанием горного рельефа на всей территории Республики. Вторым направлением оснащения современными линиями передачи остается телевидение. Учитывая, что средний радиус распространения вещания составляет 100 километров, федеральные каналы все чаще осваивают строительство так называемых беспрограммных телецентров.

Беспроводная связь РРЛ активно используется провайдерами интернета, сотовыми операторами. Известно применение радиорелейных каналов для организации корпоративной связи. Ввиду большего чем у WI —FI бюджета и необходимости получения лицензии, РЛЛ остается недоступным для малого и среднего бизнеса, частных лиц. Срок службы оборудования достигает 30 лет с учетом того, что комплексы могут работать даже в суровых условиях климата.

Традиционные РРЛ магистрального типа постепенно переходит в сегмент городских линий, уступая место оптоволоконным линиям. Однако такие шаги требуют согласования бюджета проекта. Безусловным остается применение РРЛ в северных, малозаселенных районах, где нет необходимости в прогнозировании трафика.

В практике развертывания РРЛ сегодня используются два типа технологии. Первый – PDH – плезиохронная цифровая иерархия. При такой организации передачи сигнала обеспечивается скорость в режимах 32 каналов или мультиплексирования на скорости от 2 до 139 Мбит в секунду. Считается устаревшей технологией радиорелейной связи. На смену предыдущему поколению пришел стандарт SDH . Иерархия цифровой синхронизации обеспечивает более устойчивые каналы связи посредством транспортных модулей STM . Скорость потоков в этом диапазоне варьируется от 155 Мбит в секунду до 160 Гбит. По утверждениям разработчиков стандарта, скорость передачи данных совместимой с PDH технологии может быть и выше.

В практике применения РРЛ-сетей используется несколько вариантов развертывания. Самый популярный сценарий размещения станций – пошаговое размещение вышек на маршруте оснащения. Применение технологии hop-by-hop обеспечивает возможность оперативного внесения изменений в действующие конфигурации или модернизацию устаревшего оборудования.

Принцип построения, используемое оборудование, применение

Основными компонентами, обеспечивающими передачу сигналов на большие расстояния, являются радиорелейные линии прямой видимости. В их задачи входит обеспечение устойчивой связи при передаче до потребителя сообщений в цифровом формате, вещания телевидения и звуковых эфиров. В состав волнового спектра входят диапазоны сантиметровых и дециметровых волн.

В используемых диапазонах прямой видимости не наблюдаются помехи атмосферного и техногенного происхождений. Расстояние между ближайшими станциями, работающих в ширине спектра 30 ГГц является расчетным, зависит от высоты вышек и рельефа в местности размещения.

Для передачи информации на одной частоте или дуплексе используется комплекс аппаратуры. Это радиоствол (канал с широкой пропускной способностью), телефонный ствол и ТВ ствол, предназначенные для передачи сигналов соответствующего типа. Топология построения комплекса оборудования представлена трехуровневой системой:

Радиорелейная связь нашла широкое применение в областях народного хозяйства. Принцип ретрансляции активно используется для организации и построения локальных сетей крупных корпораций. Надежность и достоверность передаваемых сигналов применяется для управления войсками и организации коммерческой связи.

Преимущества технологии РРЛ успешно внедряются в инфраструктуру производств, имеющих большое количество удаленных объектов. Это аэропорты, железнодорожные и морские министерства сообщений. Единственным недостатком, который остается ощутимым при возведении систем передачи данных остается необходимость обеспечения прямой видимости между ретрансляторами. Это требование ставит целый ряд условий перед службами технического оснащения, повышает бюджет проекта за счет необходимости увеличения числа промежуточных станций.

Радиорелейные линии связи являются одной из наиболее масштабных и прогрессивных сетей передачи, приема и обработки данных во всем мире. Сам принцип передачи сообщений основан на распространении радиоволн в атмосфере. Для того, чтобы сигнал смог преодолевать большие расстояния, необходимо использовать специальное оборудование радиорелейной связи - цепочку ретрансляторов, благодаря которым и будет осуществляться распространение радиоволн определенной частоты.

Принцип работы радиорелейной линии связи

Чтобы понять природу распространения радиоволн, необходимо изучить физику, механику и динамику этих явлений, которые непосредственно связаны с атмосферными свойствами и электромагнитным полем. Исходя из множества факторов, и производится расчет радиорелейных линий связи. Если не вдаваться в подробности, то принцип функционирования всей системы выглядит следующим образом:

  • сначала в специальном передающем устройстве происходит генерирование колебаний высокой частоты и выделяется так называемый несущий сигнал;
  • информация, которую необходимо передать (голос, видео, текст), кодируется и преобразовывается в частотные колебания, а затем модулируется вместе с несущим сигналом;
  • посредством специальных антенн подготовленный сигнал транслируется в пространство, попадая на приемные устройства, которые находятся в определенном радиусе от передатчика;
  • в случае недостаточной мощности сигнала, сложности его распространения или большого расстояния между передатчиком и приемником, используются радиорелейные линии связи, оборудование которых позволяет решить возникшие проблемы. Как правило, это сеть наземных ретрансляторов, которые не только принимают сигнал, но и усиливают его, устраняют помехи и передают по цепочке к следующему объекту через узконаправленные антенны;
  • сигнал достигает приемника, где происходит его отделение от несущей частоты и преобразование в изначальный вид с последующим отображением на терминале связи. Это может быть просто голосовое сообщение или полноценная видео трансляция. Эфирное радио и телевизионное вещание как раз и построено на этом принципе передачи сигнала.

Типы линии связи

Радиорелейные и спутниковые линии связи - это комплекс оборудования, которое сочетает наземные и орбитальные ретрансляторы, которые дают возможность транслировать сигнал практически в любую точку на поверхности планеты.

Существует два типа основных способа передачи радиосигнала:

  • передача по прямой видимости;
  • радиорелейная тропосферная связь.

В первом случае передача сигнала происходит по стандартному алгоритму - от источника (передатчика) через систему наземных ретрансляционных сетей непосредственно к приемнику. Одна из особенностей заключается в том, что ретрансляторы располагаются фактически в зоне непосредственной видимости, на естественных возвышенностях (горы, холмы). В случае отсутствия прямого прохождения сигнала между антеннами возникают помехи и искажения благодаря дифракционным замираниям, что может привести к существенному ослаблению сигнала и обрыву связи. Использование этого типа коммуникаций ограничено в местах с отсутствием необходимой инфраструктуры и нецелесообразны в малонаселенных районах нашей страны преимущественно в северной ее части.

Решением указанных выше проблем стала новая технология - тропосферная радиорелейная линия связи. Принцип распространения сигнала остался прежним, изменился его способ, который в своей основе содержит физические процессы отражения радиоволн различных диапазонов от нижних слоев атмосферы. Многочисленные испытания показали, что наибольший эффект дает применение волн диапазона УКВ. Благодаря правильным расчетам, трансляцию радиосигнала удалось произвести на 300 км.

Преимущества радиорелейной линия связи

Преимущества новой технологии очевидны:
  • нет необходимости строить ретрансляторы в зоне прямой видимости;
  • существенное увеличение радиуса дальности прохождения сигнала;
  • возможность обеспечения максимальной дальности передачи информации на расстояние до 450 километров благодаря расположению ретрансляторных антенн на холмах и других возвышенностях.

Одна из основных проблем, с которыми столкнулись ученые, заключается в сильном эффекте затухания колебаний при трансляции радиоволн. Вопрос был решен благодаря использованию активного ретрансляторного оборудования, которое позволяет не только принимать и передавать радиоволну, но и стабилизировать уровень сигнала, усиливать его и отфильтровывать помехи. Современная радиорелейная военная связь функционирует на основе технологии распространения сигнала в тропосфере, которая дополнена другими инновационными решениями.

Радиорелейная связь обеспечивает высококачественные дуплексные каналы связи, практически мало зависящие от времени года и суток, от состояния погоды и атмосферных помех.

При организации радиорелейной связи необходимо учитывать зависимость ее от рельефа местности, что вызывает необходимость тщательного выбора трассы линии связи, невозможность работы или значительное уменьшение дальности действия радиорелейных станций в движении, возможность перехвата передач и создания радиопомех противником.

Радиорелейная связь может быть организована по направлению, по сети и по оси. Применение того или иного способа в каждом отдельном случае зависит от конкретных условий обстановки, особенностей организации управления, рельефа местности, важности данной связи, потребности в обмене, наличия средств и других факторов.

Направление радиорелейной связи - это способ организации связи между двумя пунктами управления (командирами, штабами) (Рис. 19).

Рисунок 19. Организация радиорелейной связи по направлениям

Этот способ обеспечивает наибольшую надежность работы направления связи и большую ее пропускную способность, но по сравнению с другими способами обычно требует повышенного расхода частот и радиорелейных станций при штабе, организующем связь. Кроме того, при организации связи по направлениям возникают трудности в размещении большого количества радиорелейных станций без взаимных помех на узле связи старшего штаба и исключается возможность маневра каналами между направлениями.

Сеть радиорелейной связи - это способ организации связи, при котором связь старшего пункта управления (командира, штаба) с несколькими подчиненными пунктами управления (командирами, штабами) осуществляется с помощью одного радиорелейного полукомплекта (Рис. 20).

Рисунок 20. Организация сети радиорелейной связи

При работе по сети передатчики радиорелейных станций подчиненных корреспондентов постоянно настроены на частоту приемника главной станции. Следует иметь в виду, что при отсутствии обмена все станции сети должны находиться в симплексном режиме, то есть в режиме дежурного приема. Право вызова предоставляется преимущественно главной станции. После вызова главной станцией одного из корреспондентов переговор между ними может продолжаться в дуплексном режиме. По окончании переговора станции вновь переключаются в симплексный режим. Количество радиорелейных станций в сети не должно превышать трех-четырех.

Связь по сети возможна главным образом при условии, когда главная станция работает на ненаправленную (штыревую) антенну. В зависимости от обстановки подчиненные корреспонденты могут использовать как штыревые, так и направленные антенны. Если подчиненные корреспонденты находятся относительно главной станции в каком-либо одном направлении или в пределах сектора направленного излучения антенны главной станции, то связь старшего командира с подчиненными может обеспечиваться по сети и при работе на направленную антенну, имеющую сравнительно большой угол направленности (60 - 70°).

Ось радиорелейной связи - это способ организации радиорелейной связи, при котором связь старшего пункта управления (командира, штаба) с несколькими подчиненными пунктами управления (командирами, штабами) осуществляется по одной радиорелейной линии, развернутой в направлении перемещения своего пункта управления или одного из пунктов управления 1подчиненных штабов (Рис. 23).


Рисунок 21. Организация оси радиорелейной связи

Связь пункта управления старшего штаба с пунктами управления осуществляется через опорные (вспомогательные) узлы связи, на которых производится распределение телефонных и телеграфных каналов между пунктами управления.

По сравнению со связью по направлениям организация радиорелейной связи по оси уменьшает количество радиорелейных станций на узле связи пункта управления старшего штаба и тем самым упрощает назначение частот этим станциям без взаимных помех, дает возможность осуществлять маневр каналами, обеспечивает более эффективное их использование, сокращает время для выбора и расчета трасс, облегчает управление радиорелейной связью и требует меньшего количества личного состава, необходимого для охраны и обороны промежуточных станций. Недостатками этого способа являются зависимость всей радиорелейной связи от работы осевой линии и необходимость в дополнительной коммутации каналов на опорных (вспомогательных) узлах связи. Пропускная способность оси определяется емкостью осевой линии, поэтому организация радиорелейной связи по оси целесообразна лишь в том случае, если на осевой линии используются многоканальные станции, а на линиях привязки - малоканальные. Применение для оси малоканальных станций не дает должного эффекта, так как требует значительного количества этих станций и частот.

Радиорелейная связь осуществляется непосредственно или через промежуточные (ретрансляционные) радиорелейные станции. Эти станции развертываются в тех случаях, когда связь непосредственно между оконечными станциями не обеспечивается вследствие удаленности их друг от друга или по условиям рельефа местности, а также при необходимости выделения каналов в промежуточном пункте.

Основные принципы радиорелейной связи

Структура радиорелейной системы передачи. Основные понятия и определения. Радиорелейный ствол. Многоствольные РРСП. Диапазоны частот, используемые для радиорелейной связи. Планы распределения частот.

Под радиорелейной связью понимают радиосвязь, основанную на ретрансляции радиосигналов дециметровых и более коротких волн станциями, расположенными на поверхности Земли. Совокупность технических средств и среды распространения радиоволн для обеспечения радиорелейной связи образует радиорелейную линию связи.

Земной называют радиоволну, распространяющуюся вблизи земной поверхности. Земные радиоволны короче 100 см хорошо распространяются только в пределах прямой видимости. Поэтому радиорелейную линию связи на большие расстояния строят в виде цепочки приемно-передающих радиорелейных станций (РРС), в которой соседние РРС размещают на расстоянии, обеспечивающем радиосвязь прямой видимости, и называют ее радиорелейной линией прямой видимости (РРЛ).

Рисунок 1.1 – К пояснению принципа построения РРЛ

Обобщенная структурная схема многоканальной РСП показана на рис. 1.3.

Рис. Обобщенная структурная схема многоканальной радиосистемы пере­дачи:

1,7 - каналообразующее и групповое оборудование;

2,6 - соединительная линия;

3, 5 - оконечное оборудование ствола;

4 – радиоствол

Пролет (интервал) РРЛ - это расстояние между двумя ближайшими станциями.

Участок (секция) РРЛ - это расстояние между двумя ближайшими обслуживаемыми станциями (УРС или ОРС).

Каналообразующее и групповое оборудование обеспечивает формирование группового сигнала из множества подлежащих передаче первичных сигналов электросвязи (на передающем конце) и обратное преобразование группового сиг­нала в множество первичных сигналов (на приемном конце). Указанное оборудо­вание располагается обычно на сетевых станциях и узлах коммутации первичной сети ЕАСС.

Станции РСП, в том числе те, на которых производятся выделение, вве­дение и транзит передаваемых сигналов, как правило, территориально уда­лены от сетевых станций и узлов коммутации, поэтому в состав большин­ства РСП входят проводные соединительные линии.

Для формирования радиосигнала и передачи его на расстояние посред­ством радиоволн используются различные радиосистемы связи. Радиосис­тема связи представляет собой комплекс радиотехнического оборудования и других технических средств, предназначенный для организации радиосвязи в заданном диапазоне частот с использованием определенного меха­низма распространения радиоволн. Вместе со средой (трактом) распро­странения радиоволн радиосистема связи образует линейный тракт или ствол. Ствол РСП состоит из оконечного оборудования ствола и радиоствола. Оборудование ствола располагается на оконечных и ре­трансляционных станциях.

В оконечном оборудовании ствола на передающем конце формируется ли­нейный сигнал, состоящий из группового и вспомогательных служебных сигна­лов (сигналов служебной связи, пилот-сигналов и др.), которым модулируются высокочастотные колебания. На приемном конце производятся обратные опера­ции: демодулируется высокочастотный радиосигнал и выделяются групповой, а также вспомогательные служебные сигналы. Оконечное оборудование ствола располагается на оконечных станциях РСП и на специальных ретрансляционных станциях.

Назначением радиоствола является передача модулированных радиосигна­лов на расстояние с помощью радиоволн. Радиоствол называется простым, если в его состав входят лишь две оконечные станции и один тракт распространения радиоволн, и составным, если помимо двух оконечных радиостанций он содер­жит одну или несколько ретрансляционных станций, обеспечивающих прием, преобразование, усиление и повторную передачу радиосигналов. Необходи­мость использования составных радиостволов обусловлена рядом факторов, основными из которых являются протяженность РСЦ, ее пропускная способ­ность и механизм распространения радиоволн.


Структурная схема ствола двусторонней РСП изображена на рисунке

Рис. 1.4. Структурная схема ствола двусторонней радиосистемы передачи:

1 -конечное оборудование;

2 - передающее оборудование;

3 - приемное оборудова­но;

4 -передатчик;

5 - приемник;

6 -фидерный тракт;

7 -антенна;

8 - тракт распро­странения радиоволн;

9 - помехи (внутрисистемные и внешние)


От оконечного передающего оборудования 2 ствола ^ 1 на вход радио­ствола поступает высокочастотный радиосигнал, модулированный линей­ным сигналом. В радиопередатчике 4 мощность радиосигнала увеличивает­ся до номинального значения, а его частота преобразуется для переноса спектра в заданный диапазон частот. По фидерному тракту 6передаваемые радиосигналы направляются в антенну 7, которая обеспечивает излучение радиоволн в открытое пространство в нужном направлении. При этом в большинстве современных двусторонних РСП для передачи и приема ра­диосигналов противоположных направлений используется общий антенно-фидерный тракт. В открытом пространстве (тракте распространения 8) ра­диоволны распространяются со скоростью, близкой к скорости света с=3*10 8 м/с. Часть энергии радиоволн, приходящих от радиостанции 1, улавливается антенной 7, находящейся на оконечной радиостанции 2. Энергия принятого радиосигнала от антенны 7 по фидерному тракту 6 на­правляется в радиоприемник 5, где осуществляются частотная селекция принимаемых радиосигналов, обратное преобразование частоты и необхо­димое усиление. С выхода радиоствола принятый радиосигнал поступает на оконечное оборудование ствола 1. Аналогично радиосигналы передают­ся в противоположном направлении от оконечной радиостанции 2 к радио­станции 1. Как видно из рис. 1.4, радиоствол двусторонней РСП состоит из двух радиоканалов, каждый из которых обеспечивает передачу радиосиг­налов в одном направлении. Таким образом, оборудование радиоствола (включающее радиопередатчики, радиоприемники и антенно-фидерные тракты) является по сути дела оборудованием сопряжения оконечного обо­рудования ствола РСП с трактом распространения радиоволн.

Диапазоны частот

Планы распределения частот

Для работы РРЛ выделены полосы частот шириной 400 МГц в диапазоне 1.2 ГГц (1,7...2,1 ГГц), 500 МГц в диапазонах 4 (3,4... 3,9), 6 (5,67 ...6,17) и 8 (7,9... 8,4) ГГц и шириной 1 ГГц в диапазонах 11 и 13 ГГц и более высокочастотных. Эти полосы распределяют между ВЧ стволами радиорелейной системы по определенному плану, называемому планом распределения частот. Планы частот составляют так, чтобы обеспечить минимальные взаимные помехи между стволами, работающими на общую антенну.

В полосе 400 МГц может быть организовано 6, в полосе 500 МГц - 8 и в полосе 1 ГГц-12 дуплексных ВЧ стволов.

В плане частот (рис. 1.3) обычно указывают среднюю частоту f0. Частоты приема стволов располагают в одной половине выделенной полосы, а частоты передачи - в другой. При таком делении получают достаточно большую частоту сдвига, чем обеспечивают достаточную развязку между сигналами приема и передачи, поскольку РФ приема (или РФ передачи) будут работать только в половине всей полосы частот системы. При этом можно использовать общую антенну для приема и передачи сигналов. В случае необходимости получают дополнительную развязку между волнами приема и передачи в одной антенне за счет применения разной поляризации. На РРЛ используют волны с линейной поляризацией: вертикальной или горизонтальной. Применяют два варианта распределения поляризаций. В первом варианте на каждой ПРС и УРС происходит изменение поляризации так, что принимают и передают волны разной поляризации. Во втором варианте в направлении "туда" используют одну поляризацию волн, а в направлении "обратно"- другую.

Рисунок 1.3. План распределения частот для радиорелейной системы КУРС для станции типа НВ в диапазонах 4 (f0=3,6536), 6(f0=5,92) и 8(f0=8,157)

Станцию, на которой частоты приема расположены в нижней (Н) части выделенной полосы, а частоты передачи в верхней (В) - обозначают индексом "НВ". На следующей станции частота приема окажется выше частоты передачи и такую станцию обозначают индексом "ВН".

Для обратного направления связи данного ствола можно взять или ту же пару частот, что и для прямого, или другую. Соответственно говорят, что план частот позволяет организовать работу по двухчастотной (рис. 1.4) или четырехчастотной (рис. 1.5) системам. На этих рисунках через f1н, f1в,…f5н, f5в обозначены средние частоты стволов. Индексы частот соответствуют обозначениям стволов на рис. 1.3. При двухчастотной системе на ПРС и У PC для приема с противоположных направлений обязательно должна быть взята одинаковая частота. Антенна WA1 (рис. 1.4,а) будет принимать радиоволны на частоте f1н с двух направлений: главного А и обратного В. Радиоволна, приходящая с направления В, создает помеху. Степень ослабления этой помехи антенной зависит от защитных свойств антенны. Если антенна ослабляет волну обратного направления не менее, чем на 65 дБ по сравнению с волной, приходящей с главного направления, то такую антенну можно использовать при двухчастотной системе. Двухчастотная система имеет то преимущество, что позволяет в выделенной полосе частот организовать в 2 раза больше ВЧ стволов, чем четырехчастотная, однако она требует более дорогих антенн.

На магистральных РРЛ, как правило, применяют двухчастотные системы. В плане частот не предусмотрены защитные частотные интервалы между соседними стволами приема (передачи). Поэтому сигналы соседних стволов трудно разделить с помощью РФ. Чтобы избежать взаимных помех между соседними стволами, на одну антенну работают либо четные, либо нечетные стволы. В плане частот указывают минимальный частотный разнос между стволами приема и передачи, подключенными к одной антенне (98 МГц на рис. 1.3). Как правило, четные стволы используются на магистральных РРЛ, а нечетные - на ответвлениях от них. В таком случае частоты приема и передачи между стволами магистральной РРЛ распределяют согласно рис. 1.4,в, а между стволами зоновой РРЛ при четырехчастотной системе - согласно рис. 1.5,в.

На практике план частот, реализованный на РРЛ на основе двухчастотной (четырехчастотной) системы, называют двухчастотным (четырехчастотным) планом.

На РРЛ имеет место повторение частот передачи через пролет (см. рис. 1.1). При этом для того, чтобы снизить взаимные помехи между РРС, работающими на одинаковых частотах, станции располагают зигзагообразно относительно направления между оконечными пунктами (рис. 1.6). При нормальных условиях распространения сигнал от РРС1 на расстоянии в 150 км сильно ослаблен и практически не может быть принят на РРС4. Однако в отдельных случаях возникают благоприятные условия для era распространения. В целях надежного ослабления такой помехи используют направленные свойства антенн. На трассе между направлением максимального излучения передающей антенны РРС1,т. е. направлением на РРС2, и направлением на РРС4 (направление АС на рис. 1.6) предусматривают защитный угол изгиба трассы a1 в несколько градусов, так чтобы в направлении АС коэффициент усиления передающей антенны на РРС1 был достаточно мал.

Классификация РРС, состав оборудования оконечных станций. Состав оборудования и схемы построений промежуточных станций. Оборудование и особенности схемных построений узловых радиорелейных станций.