Тарифы Услуги Сим-карты

Подключение кнопки к ардуино. Подключение кнопки Программирование кнопки в ардуино

При разработке устройств часто требуется использовать кнопку, подключённую к плате Arduino. В качестве кнопки обычно используются тактовые кнопки, которые замыкают цепь при нажатии и не пропускают ток в не нажатом состоянии. Но недостаточно просто подключить кнопку к цифровому входу микроконтроллера. В статье показаны нюансы подключения и приведены примеры.

Для примера будем использовать тактовую кнопку. Кнопка имеет 4 вывода. Но на самом деле 4 вывода нужны только для прочного монтажа кнопки на плате. Внутри у неё всего 2 контакта по бокам, каждый из которых выступает за границы корпуса слева и справа. Это хорошо видно на фотографиях кнопки в разборе:

Кнопка без верхней крышки. Разными цветами выделены контакты, соединённые с разными выводами. Рядом с разобранной кнопкой видна металлическая круглая деталь, которая замыкает центральный и боковые контакты при нажатии.

Кнопка в разрезе. Видно, что крайние контакты физически соединены с одним выводом, выходящим с двух сторон. Центральный вывод устроен аналогично.

Важно не перепутать, какие контакты соединены (то есть являются единым целом), а какие должны замыкаться при нажатии. Кнопка подключается одним из контактов к любому цифровому пину Arduino, другим контактом к положительному полюсу питания. Далее нужно настроить пин Arduino, как вход, функцией pinMode() и можно считывать значение с вывода с помощью функции digitalRead() . При нажатии кнопки с вывода будет считываться значение HIGH. На этом можно было бы и закончить, если бы не одно но: в разомкнутом состоянии на ввод будут случайным образом подаваться сигналы LOW и HIGH, потому что такой вывод ни к чему не подключён и «висит в воздухе». Для правильного подключения нужно вывод, к которому подключена кнопка, «подтянуть» к одному из значений. В нашем случае при не нажатой кнопке с пина должно считываться значение LOW, поэтому подтягивать будем к земле.

Для этого необходимо подключать параллельно с кнопкой к выбранному выводу большого номинала (10 КОм и больше), через который будет протекать совсем небольшой ток. Тогда при не нажатой кнопке на пине будет чёткое значение LOW, а при нажатии кнопки наш подтягивающий резистор никак не помешает считать HIGH. Потому что через подтягивающий резистор утечёт совсем немного тока по сравнения с током короткого замыкания пина контроллера на положительный полюс питания.

После сборки схемы загрузите в плату следующую программу:

/* Переключаем светодиод при нажатии на кнопку Схема устройства: * Светодиод подключён к 13 пину (встроенный светодиод) * Тактовая кнопка подключена ко 2му пину * Резистор 10кОм используется для подтяжки 2го пина к земле */ //Задаём константы // set pin numbers: const int buttonPin = 2;// Номер пина, к которому подключена кнопка const int ledPin = 13; // Номер пина, к которому подключен светодиод //Объявляем переменные int buttonState = 0; // Переменная для хранения статуса кнопки void setup() { // Настраиваем вывод, к которому подключён светодиод, как выход pinMode(ledPin, OUTPUT); // Настраиваем вывод, к которому подключена кнопка, как вход pinMode(buttonPin, INPUT); } void loop(){ // Считываем состояние кнопки buttonState = digitalRead(buttonPin); // Проверяем, нажата ли кнопка // Если нажата, на пин с кнопкой поступит значение HIGH if (buttonState == HIGH) { // Включаем светодиод digitalWrite(ledPin, HIGH); } else { // Выключаем светодиод digitalWrite(ledPin, LOW); } }

Переключаем светодиод при нажатии на кнопку

Схема устройства:

* Светодиод подключён к 13 пину (встроенный светодиод)

* Тактовая кнопка подключена ко 2му пину

* Резистор 10кОм используется для подтяжки 2го пина к земле

//Задаём константы

// set pin numbers:

const int buttonPin = 2 ; // Номер пина, к которому подключена кнопка

const int ledPin = 13 ; // Номер пина, к которому подключен светодиод

//Объявляем переменные

int buttonState = 0 ; // Переменная для хранения статуса кнопки

void setup () {

// Настраиваем вывод, к которому подключён светодиод, как выход

pinMode (ledPin , OUTPUT ) ;

// Настраиваем вывод, к которому подключена кнопка, как вход

pinMode (buttonPin , INPUT ) ;

void loop () {

// Считываем состояние кнопки

buttonState = digitalRead (buttonPin ) ;

Кнопка — всем известное механическое устройство, которое может замыкать и размыкать электрическую цепь по желанию человека. Есть множество видов кнопок, работающих по разным правилам. Например, тактовая кнопка (push button), используемая в этом уроке, замыкает цепь только пока палец давит на неё. Кнопка на размыкание, напротив, разрывает цепь при нажатии.

Есть кнопки с группой контактов, одни из которых рвут цепь при нажатии, а другие в это время замыкают. Маленькие версии таких кнопок часто называют микропереключателями.

Тактовые кнопки, можно найти практически в каждом электронном приборе: в клавиатуре компьютера, в телефоне, в пульте от телевизора, и т.д.

Есть кнопки с фиксацией, работающие как кнопка на шариковой ручке: один раз нажали — цепь замкнулась, второй раз — разорвалась. На фото ниже как раз одна из таких. Кнопки с фиксацией удобно использовать для переключения режима работы устройства. Например, можно переключать источник питания: батарея, или блок питания.

Или другой вариант — большие кнопки для экстренной остановки оборудования. Они окрашены в яркие цвета, чтобы привлекать внимание человека. По сути — обычные тактовые кнопки на размыкание, или кнопки с фиксацией.

Это лишь некоторые варианты. Кроме кнопок, в мире электричества есть и другие механизмы, например, тумблеры и рубильники. Все они призваны механически управлять течением тока в цепи.

Подключение кнопки

Итак, мы будем работать с самой простой тактовой кнопкой, которую попробуем подключить к Ардуино Уно . Обычно, при работе с беспаечными макетными платами используется кнопка с выводами под пайку. На фото в начале урока видно, что у такой кнопки есть четыре немного загнутых вывода. Есть кнопки и с двумя прямыми выводами, они тоже подходят для наших занятий.

На электрических схемах кнопка изображается так:

Если посмотреть внутрь четырехтактной кнопки, то можно увидеть вот такую схему:

Как правило, выводы тактовой кнопки размещаются на противоположных сторонах корпуса парами. То есть мы можем использовать либо пару контактов на одной стороне, либо пару на другой.

А вот так выглядит схема двухконтактной кнопки.

С этой кнопкой сложно запутаться: два контакта, которые соединяются при нажатии кнопки.

На макетной плате оба типа тактовых кнопок обычно ставятся следующим образом:

Теперь попробуем собрать на беспаечной макетной плате самую простую цепь, которая продемонстрирует работу кнопки. Будем зажигать светодиод.

Полученная схема выполняет нехитрую функцию: нажимаем на кнопку — светодиод зажигается, отпускаем — гаснет.

Подключение к Ардуино Уно

Теперь, когда функция тактовой кнопки предельно ясна, соберем схему с кнопкой и светодиодом, и подключим их к контроллеру. Поставим перед собой простую задачу: пусть при однократном нажатии кнопки Ардуино Уно мигнет три раза светодиодом.

Принципиальная схема


Внешний вид макета


На этой схеме мы видим уже привычную цепь для . Также видим кнопку, соединенную с выводом Ардуино №3. Здесь может вполне резонно возникнуть вопрос: зачем мы соединили кнопку ещё и с землей, через резистор 10кОм? Чтобы разобраться с этим вопросом, представим что мы подключили кнопку по «наивной» схеме без всяких дополнительных резисторов.

Здесь между выводом №3 и землей изображен небольшой конденсатор, который способен накапливать заряд. Такая особенность есть у многих микроконтроллеров.

Теперь представим, что мы замыкаем кнопку. Ток начинает бежать от +5В, прямиком в контакт №3, попутно заряжая ёмкость. Ардуино успешно регистрирует нажатие кнопки. Но после того, как мы убираем палец с тактовой кнопки, вопреки нашим ожиданиями, микроконтроллер продолжает считать что кнопка нажата! Еще бы, ведь заряженный конденсатор постепенно отдает накопленный заряд в ногу №3. Это будет продолжаться до тех пор, пока ёмкость не разрядится ниже уровня логической единицы.

Подключение модуля тактовых кнопок ROC к Ардуино

Специально для ваших проектов мы в RobotClass сделали модуль из двух тактовых кнопок. На модуле уже есть необходимые резисторы и даже два светодиода для индикации нажатия кнопок.


Разберемся с подключением этого модуля к Ардуино Уно.

Принципиальная схема


Внешний вид макета


Как можно было заметить, независимо от того, какие всё-таки кнопки мы будем использовать — схема подключения не сильно меняется. Не будет менять и программа для работы с ними.

Программа для работы с кнопкой на Ардуино

Наконец, мы разобрались с нюансами нашей схемы, и готовы к написанию программы. В уроке по мы познакомились с функциями настройки выводов pinMode и функцией вывода в цифровой порт digitalWrite . На этот раз нам понадобится ещё одна важная функция, которая обеспечивает ввод информации в микроконтроллер:

DigitalRead(номер_контакта);

Эта функция возвращает логическое значение, которое Ардуино считала с заданного контакта. Это означает, что если на контакт подать напряжение +5В, то функция вернет истину* . Если контакт соединить с землей, то получим значение ложь . В языке C++, истина и ложь эквивалентны числам 1 и 0 соответственно.

Для того, чтобы интересующий нас контакт заработал в режиме ввода информации, нам нужно будет установить его в определенный режим:

PinMode(номер_контакта, INPUT);

Наконец, соберем всё вместе, и напишем программу.

Const int led = 2;
const int button = 3;
int val = 0;

void setup(){
pinMode(led, OUTPUT);
pinMode(button, INPUT);
}

void loop(){
val = digitalRead(button);
if(val == HIGH){
// цикл от 0 до 2, с шагом 1
for(int i=0; i<3; i++){
digitalWrite(led, HIGH);
delay(500);
digitalWrite(led, LOW);
delay(500);
}
}
}

Загружаем программу на Ардуино Уно, и проверяем работу программы. Если всё сделано правильно, должно получиться как на картинке:

Ну вот и всё. Теперь мы можем управлять нашими устройствами при помощи кнопок. Если вы уже прошли урок по , то мы вполне сможем сделать часы с будильником!

Программа для кнопки-триггера

Еще один пример, заслуживающий внимания — кнопка-триггер. Работает она так: один раз нажали кнопку — светодиод загорелся, второй раз нажали — потух.

Чтобы реализовать такое поведение кнопки, нам потребуется дополнительная переменная, которую часто называют «переменной состояния» или «флагом».

Const int led = 2;
const int button = 3;
int val = 0;
byte state = 0; // переменная состояния
void setup(){
pinMode(led, OUTPUT);
pinMode(button, INPUT);
}
void loop(){
// записываем в переменную val состояние кнопки
val = digitalRead(button);
// если состояние кнопки - истина, выполняем действие
if(val == HIGH){
// меняем состояние на противоположное
state = !state;
if(state == HIGH){
// если текущее состояние - истина, зажигаем светодиод
digitalWrite(led, HIGH);
} else {
// если текущее состояние - ложь, гасим светодиод
digitalWrite(led, LOW);
}
delay(300);
}
}

Загружаем программу на Ардуино и проверяем работу схемы. Быстро нажмем кнопку — светодиод зажжется. Снова нажмем — погаснет. А вот если нажать кнопку и не отпускать, то светодиод начнет мигать с периодом 600мс! Почему так? Попробуйте разобраться.

Задания

В качестве тренировки попробуем решить несколько простых задачек с кнопкой и светодиодом.

  • В схеме присутствует две кнопки и один светодиод. Пусть при нажатии на первую кнопку светодиод зажигается, а при нажатии на вторую — гаснет.
  • Пианино. В схеме присутствует семь кнопок кнопка и один динамик. При нажатии на каждую из семи кнопок динамик должен воспроизводить соответствующую ноту. Потребуется изучить .
  • Игра «Ковбои». В схеме присутствуют две кнопки, один зуммер и два светодиода. После запуска программы зуммер должен издать короткий звук. Сразу после этого, каждый из игроков должен как можно быстрее нажать свою кнопку. У того игрока, который сделает это первым, загорится светодиод. Потребуется изучить урок про прерывания.

В этом примеры мы рассмотрим подключение кнопки к контроллеру Arduino. При нажатие кнопки мы будем зажигать встроенный светодиод. Большинство плат Arduino имеют встроенный SMT светодиод, подключенный к выходу 13 (pin 13).

Необходимые компоненты

  • контроллер Arduino
  • тактовая кнопка
  • 10кОм резистор
  • контактная макетная плата
  • соединительные провода

Подключение

Подключаем выход питания (5V) и землю (Gnd), красным и черным проводом соответственно к макетной плате. Обычно на макетных платах для питания и земли используют крайние ряды контактов, как показано на рисунке. Третьим синим проводом мы соединяем цифровой пин 2 контроллера Arduino к контакту тактовой кнопки. К этому же контакту, либо к контакту, постоянно соединенному с ней в 4х штырковом исполнении, подключаем подтягивающий резистор 10 кОм, который в свою очередь соединяем с землей. Другой выход кнопки соединяем с питанием 5 В.

Когда тактовая кнопка не нажата, выход 2 подключен только к земле через подтягивающий резистор и на этом входе будет считываться LOW . А когда кнопка нажата появляется контакт между входом 2 и питанием 5В, и считываться будет .

Замечание: Чаще всего тактовые кнопки имеют по два контакта с каждой стороны так, как это показано на рисунке подключение. При этом по форме кнопка почти квадратная. ВАЖНО не перепутать при подключении какие контакты соединены, а какие замыкаются при нажатие. Лучше всего прозвонить кнопку если не уверены.

Можно также подключить кнопку наоборот — через подтягивающий резистор к питанию и через кнопку к земле. Тогда с входа будет считваться HIGH, а при нажатие кнопки LOW.

Если вход оставить неподключенным, то на входе будет считываться HIGH или LOW случайным образом. Именно поэтому мы используем подтягивающий резистор, чтобы задать определенное значение при ненажатой кнопке.

Схема

Код

/* Кнопка Включаем и выключаем светодиод нажатием кнопки. created 2005 by DojoDave modified 28 Oct 2010 by Tom Igoe This example code is in the public domain. */ // задаем константы const int buttonPin = 2; // номер входа, подключенный к кнопке const int ledPin = 13; // номер выхода светодиода // переменные int buttonState = 0; // переменная для хранения состояния кнопки void setup() { // инициализируем пин, подключенный к светодиоду, как выход pinMode(ledPin, OUTPUT); // инициализируем пин, подключенный к кнопке, как вход pinMode(buttonPin, INPUT); } void loop(){ // считываем значения с входа кнопки buttonState = digitalRead(buttonPin); // проверяем нажата ли кнопка // если нажата, то buttonState будет HIGH: if (buttonState == HIGH) { // включаем светодиод digitalWrite(ledPin, HIGH); } else { // выключаем светодиод digitalWrite(ledPin, LOW); } }


Смотрите также

Инструкция

Кнопки бывают разные, но все они выполняют одну функцию - физически соединяют (или, наоборот, разрывают) между собой проводники для обеспечения электрического контакта. В простейшем случае - это соединение двух проводников, есть кнопки, которые соединяют большее количество проводников.
Некоторые кнопки после нажатия оставляют проводники соединёнными (фиксирующиеся кнопки), другие - сразу же после отпускания размыкают цепь (нефиксирующиеся).
Также кнопки делят на нормально разомкнутые и нормально замкнутые. Первые при нажатии замыкают цепь, вторые - размыкают.
Сейчас нашёл широкое применение тип кнопок, которые называют "тактовые кнопки". Тактовые - не от слова "такт", а скорее от слова "тактильный", т.к. нажатие хорошо чувствуется пальцами. Это кнопки, которые при нажатии замыкают электрическую цепь, а при отпускании - размыкают.

Кнопка - очень простое и полезное изобретение, служащее для лучшего взаимодействия человека и техники. Но, как и всё в природе, она не идеальна. Проявляется это в том, что при нажатии на кнопку и при её отпускании возникает т.н. " " ("bounce" по-). Это многократное переключение состояния кнопки за короткий промежуток времени (порядка нескольких миллисекунд), прежде чем она примет установившееся состояние. Это нежелательное явление возникает в момент переключения кнопки из-за упругости материалов кнопки или из-за возникающих при электрическом микроискр.
Увидеть своими глазами можно с помощью Arduino, что мы и сделаем чуть позже.

Чтобы подключить нормально разомкнутую тактовую кнопку к Arduino, можно поступить самым простым способом: один свободный проводник кнопки соединить с питанием или землёй, другой - с цифровым выводом Arduino. Но, вообще говоря, это неправильно. Дело в том, что в моменты, когда кнопка не замкнута, на цифровом выводе Ардуино будут появляться электромагнитные наводки, и из-за этого возможны ложные срабатывания.
Чтобы избежать наводок, цифровой вывод обычно подключают через достаточно большой резистор (10 кОм) либо к земле, либо к питанию. В первом случае это называется " с подтягивающим резистором", во втором - "схема со стягивающим резистором". Давайте рассмотрим каждую из них.

Сначала подключим к Arduino кнопку по схеме с подтягивающим резистором. Для этого один контакт кнопки соединим с землёй, второй - с цифровым выходом 2. Цифровой выход 2 также подключим через резистор номиналом 10 кОм к питанию +5 В.

Напишем вот такой скетч для обработки нажатий кнопки и загрузим в Arduino.
Теперь встроенный светодиод на выводе 13 постоянно горит, пока не нажата кнопка. Когда нажимаем кнопку, она принимает состояние LOW, и светодиод гаснет.

Теперь соберём схему со стягивающим резистором. Один контакт кнопки соединим с питанием +5 В, второй - с цифровым выходом 2. Цифровой выход 2 подключим через резистор номиналом 10 кОм к земле.
Скетч менять не будем.

Теперь светодиод не горит, пока кнопку не нажали.

Видео по теме

Совет 2: Как избавиться от дребезга контактов при подключении кнопки к Arduino

Мы уже рассматривали подключение кнопки к Arduino и затрагивали вопрос "дребезга" контактов. Это весьма неприятное явление, которое вызывает повторные нажатия кнопки и усложняет программную обработку нажатий кнопки. Давайте же поговорим о том, как избавиться от дребезга контактов.

Вам понадобится

  • - Arduino;
  • - тактовая кнопка;
  • - резистор номиналом 10 кОм;
  • - светодиод;
  • - соединительные провода.

Инструкция

"Дребезг" контактов - это явление, свойственное механическим переключателям, кнопкам, тумблерам и реле. Из-за того, что контакты обычно из металлов и сплавов, которые обладают упругостью, при физическом замыкании они не сразу устанавливают надёжное соединение. В течение короткого промежутка времени контакты несколько раз смыкаются и отталкиваются друг от друга. В результате этого электрический ток принимает установившееся значение не моментально, а после череды нарастаний и спадов. Длительность этого переходного эффекта зависит от материала контактов, от их размера и конструкции. На иллюстрации показана типичная осциллограмма при замыкании контактов тактовой кнопки. Видно, что время от момента переключения до установившегося состояния составляет несколько миллисекунд. Это и "дребезгом".

Этот эффект не заметен в электрических управления освещением, или другими инерционными датчиками и приборами. Но в цепях, где идёт быстрое считывание и обработка информации (где частоты того же порядка, что и импульсы "дребезга", или выше), это является проблемой. В частности, Arduino UNO, который работает на частоте 16 МГц, отлично "дребезг" контактов, принимая последовательность единиц и нулей вместо единичного переключения от 0 к 1.

Давайте посмотрим, как дребезг контактов влияет на правильную работу схемы. Подключим к Arduino тактовую кнопку по схеме со стягивающим резистором. Будем по нажатию кнопки зажигать светодиод и оставлять включённым до повторного нажатия кнопки. Для наглядности подключим к цифровому выводу 13 внешний светодиод, хотя можно обойтись и встроенным.

Чтобы реализовать данную задачу, первое, что приходит в голову:
- запоминать предыдущее состояние кнопки;
- сравнивать с текущим состоянием;
- если состояние изменилось, то меняем состояние светодиода.
Напишем такой скетч и загрузим в память Arduino.
При включении схемы в работу, сразу виден эффект от влияния дребезга контактов. Он проявляется в том, что светодиод загорается не сразу после нажатия кнопки, или загорается и тут же гаснет, или не выключается сразу после нажатия кнопки, а продолжает гореть. В общем, схема работает не стабильно. И если для задачи с включением светодиода это не столь критично, то для других, более серьёзных задач, это просто неприемлемо.

Постараемся исправить ситуацию. Мы знаем, что дребезг контактов проявляет себя в течение нескольких миллисекунд после замыкания контактов. Давайте после изменения состояния кнопки выжидать, скажем, 5 мсек. Это время для человека является практически мгновением, и нажатие кнопки человеком обычно происходит значительно дольше - несколько десятков миллисекунд. А Arduino прекрасно работает с такими короткими промежутками времени, и эти 5 мсек позволят ему отсечь дребезг контактов от нажатия кнопки.
В данном скетче мы объявим процедуру debounce() ("bounce" по-английски - это как раз "дребезг", приставка "de" означает обратный процесс), на вход которой мы подаём предыдущее состояние кнопки. Если нажатие кнопки длится более 5 мсек, значит это действительно нажатие.
Определив нажатие, мы меняем состояние светодиода.
Загрузим скетч в плату Arduino. Теперь всё гораздо лучше! Кнопка срабатывает без сбоев, при нажатии светодиод меняет состояние, как мы и хотели.

Аналогичная функциональность обеспечивается специальными библиотеками, например, библиотекой Bounce2. Скачать её можно по ссылке в разделе "Источники" или на сайте https://github.com/thomasfredericks/Bounce2. Для установки библиотеки помещаем её в директорию libraries среды разработки Arduino и перезапускаем IDE.
Библиотека "Bounce2" содержит следующие методы:
Bounce() - инициализация объекта "Bounce";
void interval(мсек) - устанавливает время задержки в миллисекундах;
void attach (номерПина) - задаёт вывод, к которому подключена кнопка;
int update() - обновляет объект и возвращает true, если состояние пина изменилось, и false в противном случае;
int read() - считывает новое состояние пина.
Перепишем наш скетч с использованием библиотеки. Можно также запоминать и сравнивать прошлое состояние кнопки с текущим, но давайте упростим алгоритм. При нажатии кнопки будем считать нажатия, и каждое нечётное нажатие будем включать светодиод, каждое чётное - выключать. Такой скетч смотрится лаконично, его легко прочитать и легко применить.

Источники:

  • Убираем дребезг контактов кнопки, подключённой к Arduino
  • Библиотека Bounce2