Тарифы Услуги Сим-карты

Гидравлический расчет трубопроводов тепловой сети пример. Гидравлический расчет тепловой сети

Для проведения гидравлических расчетов трубопроводов, транспортирующих любой энергоноситель, должны быть предварительно определены и заданы:

  • схема трубопроводной системы с указанием материалов, из которых они изготовлены; состояние их внутренней поверхности (эквивалентная шероховатость);
  • предельные значения давлений и температур энергоносителя, которые они могут выдержать без разрушения;
  • местоположение энергетического источника и каждого потребителя;
  • геометрические длины каждого участка трубопроводов, а также количество и типы установленных на участке местных сопротивлений;
  • расчетные (максимальные) потребности каждого потребителя в транспортируемом энергоносителе;
  • требующиеся каждому потребителю параметры теплоносителей;
  • табличные или графические материалы для определения зависимостей физических свойств теплоносителя (плотность, вязкость и др.) от изменения его параметров при движении по трубопроводу.

В задачу гидравлических расчетов входят:

  • определение диаметров всех участков трубопровода, обеспечивающих доставку каждому потребителю необходимое ему расчетное количество теплоносителя (энергоносителя);
  • определение потерь давления энергоносителя при прохождении через соответствующий участок трубопроводной системы.
  • определение величины давления энергоносителя в каждом сечении рассчитываемого трубопровода.

Падение давления Δр у, Па, или напора Δh у = Δр у /ρg, м, энергоносителя при движении через участок трубопровода, транспортирующего энергоноситель в виде сжимаемой (пар) или несжимаемой (вода) жидкости вызывается затратой энергии на преодоление сил трения между слоями жидкости и стенками трубопровода (так называемое линейное падение давления Δр у.л. или напора Δh у.л.) и затратой энергии на вихреобразование при прохождении потоком элементов трубопроводного участка, вызывающих изменение его направления и скорости (так называемое падение давления Δр у.м. или напора Δh у.м. в местных сопротивлениях, размещенных на участке трубы). Величины полных потерь давления и напора на участке получают суммированием

Δр у = Δр у.л + Δр у.м или Δh у = Δh у.л + Δh у.м.

Линейное падение давления –

Δр у.л = R л ×l у, Па,

а напора –

Δh у.л = i l у, м,

где l у – длина участка трубопровода, м; R л – удельное падение давления на одном метре длины участка, Па/м; i – гидравлический уклон, т.е. потеря напора на одном метре длины трубопровода (величина безразмерная).

Удельное линейное падение давления R л, Па/м, так же, как и гидравлический уклон i, определяются по уравнению Дарси – Вейсбаха:

где λ– коэффициент гидравлического трения; θ – усредненная по сечению трубы скорость энергоносителя, м/с; ρ– плотность энергоносителя, кг/м 3 ; d в – внутренний диаметр трубопровода, м; G – массовый расход энергоносителя, кг/с; g – ускорение свободного падения, м/с 2 .

Из (3.76) и (3.77) следуют формулы для вычисления внутреннего диаметра труб

а также зависимости для вычисления массового расхода G, кг/с:

Величина коэффициента гидравлического трения l зависит от режима течения потока (характеризуемого значением числа Рейнольдса – Re) и от состояния внутренней поверхности стенки трубы (которое характеризуется отношением величины выступов эквивалентной шероховатости стенки D к внутреннему диаметру трубы). Данные о значениях эквивалентных абсолютных шероховатостях D труб, изготовленных из различных материалов, приведены в табл.3.8. Для вычисления l в гидравлических расчетах трубопроводов тепловых сетей целесообразно использовать формулы, приведенные в табл.3.9.

Потери давления или напора при прохождении потока через местное сопротивление, размещенное на трубопроводе, определяются по выражениям

Таблица 3.12.

Значения коэффициентов местных сопротивлений элементов тепловых сетей
Значение [] Характеристика местного сопротивления Значение []
Отводы Гнутые гладкие под углом 90° при: R гн d в = 1 R гн d в = 3 R гн d в = 4 R гн d в > 4 Гнутые со складками по углом 90° при: R гн /d в = 3 R гн /d в = 4 Сварные под углом 90°: одношовные двухшовные трехшовные Сварные одношовные под углом: 60° 40° 30° 1,0 0,5 0,3 0,1¸0,2

0,8 0,5

0,6 0,5

0,7 0,3 0,2

Тройники При разделении потоков: для прямого прохода для ответвления При слиянии потоков: для прямого прохода для встречных потоков Арматура: задвижки нормальные клапаны проходные клапаны с косым шпинделем обратные клапаны поворотные обратные клапаны подъемные водоотделитель грязевик компенсатор сальниковый компенсатор волнистый 1,0 1,5

1,2¸1,8 3,0

0,5* 4¸8

6,5¸7 8¸12 4¸10 0,2¸0,3 2,5

*Коэффициент сопротивления нормальной задвижки при ее частичном прикрытии определяется по выражению ζ={(1,17-n)/[(0,67-0,57n)n-1} 2 , где n = доля открытия задвижки.

Открытая: n = 1, ζ= 0,5; закрытая: n = 0, ζ= ∞; открыта на 50%: n = 0,5, ζ= 6,2; открыта на 10%: n = 0,1. ζ= 270.

Приведенные выше зависимости и табличные данные применимы для гидравлического расчета трубопроводных систем с разнообразными энергоносителями. Ниже излагается методика гидравлического расчета на примере разветвленной двухтрубной закрытой водяной тепловой сети (рис. 3.17, а), состоящей из 4 потребителей и 7 участков тепловой сети в двухтрубном исполнении.

При проектировании тепловой сети диаметры подающей и обратной труб на каждом участке должны быть одинаковы и рассчитаны на пропуск к каждому i-му потребителю максимального расчетного расхода сетевой воды G di , кг/с.

При качественном регулировании отпуска теплоты как в открытых, так и в закрытых системах теплоснабжения величина расхода G di , кг/с:

G в.р.i – расчетный расход воды для системы вентиляции i-го потребителя:

  • в закрытых системах теплоснабжения при параллельной схеме присоединения водоподогревателей

Значение коэффициента k з, учитывающего ту долю среднего расхода воды на горячее водоснабжение, которая проходит через участок тепловой сети, в расчете его диаметра трубы данного участка следует принимать:

а) при качественном регулировании отпуска теплоты по отопительной нагрузке:

  • в открытых системах с тепловым потоком до 100 МВт – k з = 0,8, а при тепловом потоке в 100 и более МВт – k з = 1,0
  • в закрытых системах с тепловым потоком до 100 МВт – k з = 1,2, а при тепловом потоке в 100 и более МВт – k з = 1,0;

б) при качественном регулировании отпуска теплоты по совмещенной нагрузке отопления и горячего водоснабжения – k з = 0.

Расчетное количество пара, необходимое i-му потребителю для обеспечения технологической нагрузки Q т.р.i , кВт:

G т.р.i =Q т.р.i /; (3.92)

где х – доля возвращаемого конденсата.

Значения величин τ 1ор,τ 2ор,τ 2вр,τ " 1 ,τ " 2г, t г, t х, t пр, t s приведены в разд. 2.

Используя рис.3.17, определяют количество и расположение всех потребителей, длины всех участков, типы и количества местных сопротивлений каждого участка сети.

По выражениям (3.86)¸(3.91) определяют расчетные расходы ко всем потребителям G d1 , G d2 , G d3 , G d4 . Используя табл.3.8, принимают значение эквивалентной шероховатости стальных труб D э = 0,0005 м.

Так как по сети движется несжимаемая жидкость (сетевая вода), значение температуры которой при движении воды по длине трубы фактически не меняется, а определение диаметров тепловой сети проводят при режиме, когда температура сетевой воды τ 1 " °С, то принимают для всех участков значение плотности воды ρ = 975 кг/м 3 , а значение ее кинематической вязкости ν = 0,416×10 -8 м 2 /с.

Учитывая, что скорость движения воды в трубах лежит в пределах 0,5¸3,5 м/с, а диаметры применяемых в тепловых сетях труб лежат в пределах 0,1¸1,4 м, то проведение несложных расчетов показывает, что в тепловых сетях при расчетных режимах на любом участке Re > 568d в /Δ э.

Поэтому формулы (3.76)¸(3.81) преобразуются в более удобные для расчетов виды:

Порядок гидравлического расчета двухтрубных разветвленных водяных сетей

Расчет главной магистрали

1.Так как диаметры подающей и обратной труб на каждом участке одинаковы, то проводят определение диаметров только подающей линии. 2.Выбирают за главную магистраль последовательность участков от энергетического источника до самого удаленного потребителя. На рис. 3.17 это потребитель 1 и участки l 1 +l 5 + l 6 . 3.Для всех участков главной магистрали принимают (из технико-экономических соображений) численное значение удельного линейного падения давления R л.эк. , Па/м. 4.По (3.94) определяют диаметр d в1 , м, последнего участка магистрали l 1 . Используя данные табл.2.35, округляют полученное значение в сторону ближайшего стандартного диаметра d в.1.ст, м. 5.Уточняют по (3.93) величину реального удельного линейного падения давления на участке 1 при течении потока через диаметр стандартного размера R л.1.d . Если система закрытая, то и в обратной трубе будут такой же диаметр, расход, величины R л1d и Δр л1 = R л1 ×l 1 . 6. Используя схему на рис. 3.17 и данные табл. 3.12, определяют потери в местных сопротивлениях на подающей трубе участка 1 Δр м1п по формуле (3.82) (один клапан ζ к = 6; одна задвижка ζ з = 0,5; один сальниковый компенсатор ζ ск = 0,2; один тройник раздающий на проход ζ тр = 1; один грязевик ζ гр = 7) и их долю a 1 =Δр м1п /Δр л1 . 7. Вычисляют общие потери давления на участке 1 Δр 1d =R л1d l 1 (1+a 1). 8. Аналогично проводится расчет и остальных участков главной магистрали.

Рис.3.17. Схемы разветвленной тепловой сети

а – водяная двухтрубная; б – паровая однотрубная; 1–4 – потребители теплоты; – клапан; – нормальная задвижка; – компенсатор; П – то же гибкий П-образный; I – сетевой насос; II – подпиточный насос; III – водоподогреватель; IV – регулятор подпитки; V – паровой котел

Расчет ответвлений

1. Из схемы на рис.3.17 очевидно, что общие потери давления на участке ответвления 2 совпадают с общими потерями на участке главной магистрали 1, который расположен после точек присоединения ответвления. Отсюда, так как R л2 =Δр 2 /l 1 (1+a 2), то задаются значением а 2 и подставив Δр 1д =Δр 2 , определяют R л2 =Δр 1д /l 2 (1+a 2) 2. По (3.94) определяют диаметр d в2 и округляют его в сторону ближайшего большего диаметра d в.2.ст.б. Далее расчет ведется по изложенной выше методике расчета участка главной магистрали с целью определения R p2o , Δр м2п, а 2 , Δр 2д.

При расчете открытых двухтрубных водяных сетей в данную методику вносят некоторые изменения:

1)Диаметры и подающей и обратной трубы участка открытой двухтрубной водяной сети выбирают по единому расчетному расходу

G di = √[(G o.p.i +G в.р.i) 2 +(G o.p.i +G в.р.i)G г.ср.i _0,5G г.ср.i ]

и округляют до одинаковых стандартных значений d в.сг.i . Однако в реальных условиях по ним протекают расходы, отличающиеся на величину G г.ср.i . Поэтому, начиная с пункта 6 расчета главной магистрали, возникают отличия от расчета закрытой системы теплоснабжения.

2)Уточняют по (3.93) величины удельного линейного падения давления на участке 1 раздельно для подающей

R л1д n =13,62*10 -6 (G o.p.1 +G в.р.1 +G г.ср.1) 2 /d в.ст1 5,25 ; Δp л1 n =R л1д n *l 1 ;

и обратной линий

R л1д o =13,62*10 -6 (G o.p.1 +G в.р.1 +G г.ср.1) 2 /d в.ст1 5,25 ; Δp л1 o =R л1д o *l 1 .

3)Раздельно учитывают сумму коэффициентов местных сопротивлений для подающей трубы Σζ n

И для обратной трубы Σζ o , а также величины потерь давления в их местных сопротивлениях:

Δp м.1.n =0,8106Σζ n (G o.p.1 +G в.р.1 +G г.ср.1) 2 /ρd в.ст1 4 ; a 1n =Δp м.1.n /Δp л1 n ;

Δp м.1.o =0,8106Σζ o (G o.p.1 +G в.р.1 +G г.ср.1) 2 /ρd в.ст1 4 ; a 1o =Δp м.1.o /Δp л1 o .

4)Общие потери давления на участке считают суммарно по подающей и обратной трубам

ΣΔp 1д =l 1 ; и так на всех остальных участках главной магистрали.

Расчет ответвлений в открытой системе теплоснабжения

1.Задаются величиной а 2 и вычисляют удельное линейное падение давления на ответвлениях R л2 =ΣΔp 1д /2]l 2 (1+a 2)]. 2.Определяют одинаковые диаметры подающей и обратной трубы d в2 участка 2 по G д2 и R л2 , используя (3.94), и округляют каждый из них в сторону ближайшего большего стандартного d в2.ст. Естественно, что и d в2.ст.n =d в2.ст.o . 3.Так как реальные расходы через подающую и обратную трубы участка различаются, то вычисляют по (3.93) величины удельного падения давления на участке 2 раздельно для подающей и обратной трубы.

При гидравлическом расчете разветвленных паропроводов кроме исходных данных, необходимых для расчета водяных тепловых сетей, должны быть заданы дополнительно параметры пара р и, МПа, и t и, °С, отходящего от источника теплоты, а также величины р i и t i , требующиеся каждому потребителю.

Методика гидравлического расчета паропроводов совпадает с вышеизложенной методикой гидравлического расчета подающего трубопровода закрытой системы теплоснабжения и отличается от нее лишь в следующих моментах:

4.Направление главной магистрали выбирается по направлению к тому потребителю, для которого требуется наименьшая величина удельного линейного падения давления. С этой целью по направлению к каждому потребителю вычисляют значение удельного линейного падения давления R лi =10 6 (p и -p i)/Σl и-i , Па/м; где Σl и-i – сумма длин участков сети, через которые пар поступает к i-му потребителю от источника теплоты, м. На том направлении, где R лi будет наименьшим из всех сравниваемых R лi , ему присваивается обозначение R л.эк. Например, на схеме паропровода рис.3.17 в качестве главной принята l г.м =l 6 +l 7 +l 4 . 5.Плотность пара при движении по паропроводу существенно меняется, и для каждого участка паропровода должно вычисляться значение средней плотности пара ρ ср.i кг/м 3 . С этой целью для каждого участка главной магистрали предварительно вычисляется среднее по его длине давление пара p ср.i . Применительно к схеме однотрубного паропровода, представленного на рис. 3.17,б, это производится следующим образом:

p ср.6 =p и -(R л.эк *0,5l 6)10 -6 ; p ср.7 =p и -(R л.эк *(l 6 +0,5l 7)10 -6 ;

p ср.4 =p и -(R л.эк *(l 6 +l 7 +0,5l 4)10 -6 .

Затем для этих же участков предварительно вычисляют среднее значение температуры пара на участке – t ср.i ,°С:

t ср.6 =t ср.и -δt m.n 0,5l 6 ; t ср.7 =t ср.и -δt m.n (l 6 +0,5l 7); t ср.4 =t ср.и -δt m.n (l 6 +l 7 +0,5l 4);

Где δt m.n – опытное значение падения температуры перегретого пара при движении по теплоизолированному паропроводу. Обычно δt m.n = 0,02°С/м.

При движении насыщенного пара его температура t ср.i s находится по давлению. По найденным значениям p ср.i и t ср.i определяют среднюю плотность пара ρ ср.i , кг/м 3 .

6.По данным табл.3.8 принимают величину эквивалентной шероховатости паропроводов D=0,0002 м. 7.Внеся соответствующие коррективы по значениям D и ρ ср.i в (3.93) – (3.95), гидравлический расчет паропровода проводят по методике расчета закрытых водяных тепловых сетей.

Изложенная методика гидравлического расчета позволяет определить диаметры всех участков водяных или паровых тепловых сетей и падение давления на каждом из них, но для водяных тепловых сетей не даст ответа на вопрос: какая истинная величина давления теплоносителя будет наблюдаться в каждом конкретном сечении подающей и обратной труб? Ответ может быть получен только после построения и анализа пьезометрического графика тепловой сети.

Пьезометрический график – это график, на котором в масштабе по оси абсцисс откладываются длины участков главной магистрали и ответвлений тепловой сети, а по оси ординат наносятся: рельеф местности, по которой проложена тепловая сеть, высоты зданий, присоединенных к тепловой сети, а также величины напора теплоносителя в каждом сечении подающего и обратного теплопровода.

Методика построения пьезометрического графика излагается применительно к схеме тепловой сети, представленной на рис.3.17,а, а сам график представлен на рис.3.18.

Рис.3.18. Пьезометрический график

Приняв за начало координат оси ординат (отметка 0) уровень размещения источника теплоснабжения, а оси абсцисс (отметка 0) точку выхода магистрали тепловой сети, откладывают по ней последовательно длины участков главной магистрали: l 6 , l 5 , l 1 , а из точек соответствующих ответвлений – их длины l 2 , l 7 , l 3 и l 4 . Проводят линию рельефа местности, по которой расположен каждый участок, и в конце каждого ответвления и главной магистрали высота рельефа обозначается соответственно: z 1 , z 2 , z 3 , z 4 , м. От отметок рельефа откладывают высоты зданий в метрах, обозначенные 1Н, 2Н, 3Н, 4Н, м.

Затем приступают к построению графика давлений.

Целесообразная область давлений в обратных трубах главной магистрали и ответвлений от них определяется из соображений:

  • максимальный уровень давлений (напоров) теплоносителей, движущихся через обратные трубопроводы, не должен разрушать элементы присоединенных к ним систем потребителей. При зависимом присоединении отопительных систем самым слабым элементом являются отопительные приборы, которые выдерживают напор не выше 60 м водяного столба. Следовательно, максимальный напор в обратных трубах не может быть выше 60 м;
  • минимальный уровень давлений в обратной магистрали при зависимой схеме присоединения систем отопления не может быть ниже геометрической высоты здания плюс 5 м водяного столба, чтобы обеспечить циркуляцию теплоносителя через отопительные приборы верхнего этажа.
  • максимальный уровень давлений в подающих трубах ограничен прочностью трубопроводов использованного сортамента. На практике это составляет 160 или 250 м водяного столба;
  • минимальный уровень давления (напора) теплоносителя в подающей трубе должен обеспечивать невскипание его при самой высокой температуре τ 1.o.p . Максимальное значение используемых температур τ 1.o.p = 150°С, поэтому напор в подающей трубе не должен быть ниже 55 м водяного столба.

С учетом выделенных областей выбирают значение напора в конце обратной трубы главной магистрали в точке О max (ниже верхнего предела и выше нижнего). Из напора в точке О min – h о,max , вычитают Δp 1д /ρg=Δh 1д и находят напор в обратной трубе в точке a " - h a " . Соединяя их прямой, получают графики напоров на участке l 1 " . Вычтя из напора в точке a " величину Δh 5 , находят напор в обратной трубе в точке в " - h в " и, соединив а " и b " , получают график напоров на участке l 5 " . Далее, вычитая из напора в точке b " Δh 7д, получают напоры в точке с " , а прибавляя к напору в точке b " Δh 7д, получают напор в точке d " . Продолжая аналогично, получают полную картину графика напоров в обратных трубах.

В закрытой системе теплоснабжения график напоров в подающей линии является зеркальным отображением графика в обратной, но в области, пределы которой ограничивают 160¸55 м вод. ст.

Как видно из рис.3.18, из-за отличия рельефа местности и различий в собственной высоте зданий не всегда обслуживаемые здания можно присоединить к сети по стандартной схеме, а именно:

а). У потребителя 1 напор в обратной линии (точка О max) обеспечивает циркуляцию воды через верхние этажи и одновременно не разрушает отопительные приборы. Тем не менее разница напоров h n min и h о max менее 10 м и не обеспечивает работу элеваторов. Поэтому присоединение потребителя 1 зависимое, но с насосом смешения.

б). У потребителя 2 верхняя отметка здания вместе с отметкой рельефа z 2 больше 60 м, поэтому при нарушении циркуляции в тепловой сети гидростатический напор от этого здания может разрушить приборы нижних этажей соседних зданий. Присоединение потребителя 2 по независимой схеме предотвратит возможное разрушение приборов.

в). У потребителя 3 высота здания и геодезической отметки z 3 менее 60 метров, но выше давления в обратной линии в точке присоединения. Для нормальной циркуляции через верхние этажи здания на обратном стояке устанавливают клапан подпора.

У потребителя 4 все обеспечено, и здание присоединяется по нормальной зависимой схеме с элеватором.

Из построения линий напоров в подающей и обратной магистрали тепловой сети легко определить напоры теплоносителя на входе в источник теплоснабжения – h с " и на выходе из него – h с " , однако определенная часть напора – Δh ист – необходима для преодоления сопротивлений водоподогревателей III и внутренних трубопроводов источника. Поэтому для циркуляции теплоносителя напор, развиваемый сетевым насосом, должен составлять

ΔH с.н =h с h с " +Δh ист.

При плановой или аварийной остановке циркуляции сетевой воды уровень напоров во всех участках тепловой сети выровняется. Во избежание опорожнения отопительных систем (если он будет очень низким) или разрушения отопительных приборов (если он будет чересчур велик) на обводной линии сетевого насоса между установленными на ней клапанами к 1 и к 2 , регулируя степень их открытия, создают необходимый уровень статического напора – h ст. Заданная величина этого напора подводится к регулятору расхода IV, который будет обеспечивать необходимый уровень подпитки тепловой сети водой от подпиточного насоса II для поддержания h ст постоянным. При прекращении работы сетевого насоса I этот постоянный статический напор установится и будет поддерживаться во всей сети.

Глава2. МЕТОДИКА ГИДРАВЛИЧЕСКОГО РАСЧЕТА

ТЕПЛОВЫХ СЕТЕЙ

2.1. ЗАДАЧИ ГИДРАВЛИЧЕСКОГО РАСЧЕТА

Гидравлический расчет тепловой сети ведут по участкам. Основной задачей гидравлического расчета является определение диаметров трубопроводов d на каждом участке, обеспечивающих пропуск заданного расхода теплоносителя G при заданных потерях давления Dp или напора DН. Также могут быть решены и другие задачи: определение потерь давления Dр или напора DН на участках тепловой сети диаметром d при заданных расходах G, определение пропускной способности G участков трубопроводов диаметром d при перепадах давления на участках Dр или потерях напора DН.

На основании результатов гидравлического расчета участков определяют потери давления или напора по сети в целом, выбирают оборудование, в том числе насосы для водяных и конденсатных сетей, разрабатывают гидравлические режимы.

2.2. ОСНОВЫ ГИДРАВЛИЧЕСКОГО РАСЧЕТА

Потери давления на участках теплопроводов складываются из потерь на трение, называемых также линейными потерями Dр Л, и потерь в местных сопротивлениях Dр М:

Dр=Dр Л +Dр М (2.1.)

где Dр Л – потеря давления собственно в трубопроводе;

Dр М – потеря давления при расширениях, сужениях, поворотах трубопровода и в различных устройствах, установленных на участке (компенсаторах, задвижках, клапанах и т.д.).

Рассмотрим более подробно линейные потери давления Dр Л при течении несжимаемой жидкости. Плотность несжимаемой жидкости ρ при изменении давления практически не меняется. При этом условии на участке трубопровода с внутренним диаметром d скорость теплоносителя ω также остается неизменной. В этом случае линейная потеря давления Dр Л определяется по формуле Дарси-Вейсбаха

Dр Л =λ, (2.2.)

где λ – коэффициент гидравлического трения;

L – длина участка трубопровода.

При гидравлических расчетах часто используют понятие удельной линейной потери давления R Л, которая представляет собой линейную потерю давления. отнесенную к единице длины участка трубопровода.:

R Л =Dр Л /L. (2.3.)

Из уравнений (2.1.) и (2.2.) следует, что

R Л =λ. (2.4.)

При ламинарном течении теплоносителя по трубопроводу коэффициент гидравлического трения определяют по формуле Пуазейля-Гагена

λ=64/Re. (2.5.)

Эту формулу используют при Re≤2300. При более высоких значениях числа Рейнольдса, в так называемой переходной области, коэффициент гидравлического трения в гидравлически гладких трубах следует рассчитывать по формуле Блазиуса

λ=0,3164/Re 0,25 . (2.6)

Большинство труб, используемых для теплоснабжения, с точки зрения гидравлики являются шероховатыми. В переходной области режим течения жидкости в таких трубах определяется не только числом Re, но и величиной относительной эквивалентной шероховатости k Э /d, которая представляет собой отношение абсолютной эквивалентной шероховатости k Э к внутреннему диаметру трубы d. Под абсолютной эквивалентной шероховатостью k Э понимают такую высоту выступов равномерной искусственной шероховатости, при которой коэффициент гидравлического трения получается таким же, как и в реальной трубе.

Значения эквивалентной шероховатости, м, определенные опытным путем для различных видов труб приведены ниже.

Паровые сети……………………………………………………………………0,0002

Водяные тепловые сети ………………………………………………………..0,0005

Тепловые сети горячего водоснабжения и конденсатопроводы…………….0,001

Для расчета гидравлического трения в рассматриваемых условиях наиболее удобна формула А.Д.Альтшуля

λ=0,11. (2.7.)

Эта формула используется при 10≤Re<500.

Re<10 она практически совпадает с (2.6.).

При Re≥500 коэффициент гидравлического трения λ практически не зависит от Reи определяется только относительной эквивалентной шероховатостью , при этом линейная потеря давления Dр Л пропорциональна квадрату скорости течения ω. Поэтому область Re≥500 называют областью квадратичного закона. Поэтому в области квадратичного закона можно определить коэффициент гидравлического трения по формуле Б. Л. Шифринсона

λ=0,11() 0,25 (2.8.)

При Re>500 (2.7.) практически совпадает с (2.8.).

Получим формулу расчета удельной линейной потери давления R Л при внутреннем диаметре теплопровода d и пропускной способности участка сети G. Уравнение (2.4.) с учетом уравнения неразрывности

где G – массовый секундный расход теплоносителя на участке, преобразуется к виду

R Л =λ. (2.10.)

Отсюда следует, что

d=; (2.11.)

G=. (2.12.)

В зависимости от режима работы теплопровода в уравнения (2.10) – (2.12.)

следует подставлять значение коэффициента гидравлического трения λ из (2.5.) - (2.8.).

Режим работы водяных тепловых сетей чаще всего соответствует области квадратичного закона. В этих условиях (2.10) – (2.12.) с учетом (2.8.) принимают вид

Гидравлический расчет производят в следующей последовательности:

    Выбирают на трассе тепловых сетей главную магистраль – наиболее протяженную и загруженную, соединяющую источник теплоснабжения с дальними потребителями.

    Разбивают тепловую сеть на расчетные участки, проставляют номера (сначала по главной магистрали, затем по ответвлениям), определяют расчетные расходы теплоносителя и измеряют длину участков.

    Задавшись удельными потерями давлений на трение, исходя из расходов теплоносителя на участках, по номограмме (приложение 10) , составленным для труб с коэффициентом эквивалентной шероховатости k e = 0,0005 мм, находят диаметр трубопроводов, действительные удельные потери на трение и скорость движения теплоносителя, которая должна быть не более 3,5 м/c.

    Определив диаметры расчетных участков тепловой сети, разрабатывают монтажную схему теплопроводов, размещая по трассе запорную арматуру, неподвижные опоры, компенсаторы.

    По монтажной схеме устанавливают местные сопротивления на расчетных участках и находят сумму коэффициентов местных сопротивлений и их эквивалентные длины, в зависимости от диаметра трубопровода.

    Определяют приведённую длину расчетного участка тепловой сети

    Находят потери давления на расчетных участках тепловой сети

4.1 Определение расходов сетевой воды

Расчетный расход сетевой воды, т/ч , в закрытых системах теплоснабжения для определения диаметров труб в водяных тепловых сетях при качественном регулировании отпуска теплоты следует определять отдельно для отопления, вентиляции и горячего водоснабжения по формулам:

На отопление :

где и – температуры в подающем и обратном трубопроводах тепловой сети при расчетной температуре наружного воздуха для проектирования систем отопления и вентиляции.

На вентиляцию :

Расчетные расходы сетевой воды на горячее водоснабжение, т/ч зависят от схемы присоединения водоподогревателей. При двухступенчатой схеме присоединения расход воды определяют по следующим формулам:

где среднечасовой расход воды на горячее водоснабжение, т/ч.

И температура в подающем и обратном теплопроводах в точке излома графиков температур воды.

Формулы для определения расчетного расхода сетевой воды при параллельной схеме присоединения подогревателей приведены в .

Суммарный расчетный расход сетевой воды, т/ч, в двухтрубных тепловых сетях при качественном регулировании по отопительной нагрузке:

где коэффициент, учитывающий долю среднего расхода воды на горячее водоснабжение, принимается в зависимости от мощности системы теплоснабжения (k=1,0 при k=1,0 при ).

Для потребителей с тепловым потоком 10 МВт и менее суммарный расчетный расход воды следует определять по формуле:

При центральном качественном регулировании отпуска теплоты по совмещённой нагрузке отопления и горячего водоснабжения расчетный расход сетевой воды определяется как сумма расходов воды на отопление и вентиляцию без учета нагрузки горячего водоснабжения:

Расчетный расход сетевой воды в неотопительный период, т/чопределяется по формуле:

где определяют по формуле (33), с учётом того, что максимальную тепловую нагрузку на горячее водоснабжение определяют с учётом повышения температуры холодной воды до 15 o C;

Коэффициент, учитывающий изменение расхода воды на горячее водоснабжение в неотопительный период по отношению к отопительному, принимаемый для жилищно-коммунального сектора равным 0,8. Для курортных и южных городов , для промышленных предприятий .

ПРИМЕР 4. Для двух кварталов района города определить расчетный суммарный расход сетевой воды. Данные по расчетным тепловым потокам взять из примера 1. Температура воды в подающем трубопроводе , в обратном Регулирование отпуска теплоты производится по совмещенной нагрузке на отопление и горячее водоснабжение.

Транскрипт

1 . dio.naro d.ru Программный модуль: Гидравлический расчёт теплосети (Версия 5.) Алгоритм программного модуля выполнен на основании существующей методики (СНиП): Удельная потеря напора: R 6,7 0 3 λ G Dр5 в м.вод.ст./м G - расход теплоносителя (воды): G Q g, т/ч; 000 Q расход тепловой энергии, Гкал/ч; g - расход теплоносителя на Гкал: g, т/гкал T Dр расчётный внутренний диаметр трубопровода; в плотность воды (принята 958 кг/м3); ΔT разность температур теплоносителя в подающем и обратном трубопроводе. коэффициент гидравлического трения; 0,5 К 68 λ 0, е Коэффициент гидравлического трения: Dр Re К е эквивалентная шероховатость трубы (принята 0,5 мм); Re - число Рейнольдса. V Dp Число Рейнольдса: Re V скорость теплоносителя в трубопроводе/с., Скорость теплоносителя: V 0,354 G /с Потеря напора в одной трубе: H R L пр. Dp в 000 L пр. приведенная длина участка: L пр. L K пр. K пр. коэффициент приведения (приближенно учитывает местные сопротивления, Кпр.=,4,9). Граничные условия итераций: R Rma ; V Vma ; Hкон. Hmin Hкон. располагаемый напор в конце участка..

2 Программный модуль: Расчёт растяжки сильфонного компенсатора (Версия 5.) Алгоритм программного модуля выполнен на основании существующей методики (ИЯНШ ТУ): Максимальное расстояние между неподвижными опорами участка теплосети с осевыми сильфонными компенсаторами, определяется по формуле: nλ Lma 0,9 α Tma Tмон.min n количество блоков в компенсаторе (n=,); λ амплитуда (±) осевого хода одного блока компенсатора; α коэффициент линейного расширения материала (для Ст0 α=, 0-5 С -); T ma максимальная рабочая температура трубопровода, С; T мон.min минимальная температура трубопровода при монтаже компенсатора (принята -8С); 0,9 коэффициент запаса (запас 0%). Величина растяжки сильфонного компенсатора перед установкой определяется по формуле: Δ L α L Tma Tмон.min Tмон. T максимальная рабочая температура трубопровода, С; ma T мон. температура трубопровода при монтаже компенсатора (изменяется от 8 до 30С); L длина участка (L<=L ma). 5 силф. Усилие от одного трубопровода на неподвижную опору: F P 0 c P ma максимальное давление в трубопроводе, атм.; λ амплитуда (±) осевого хода одного блока (одного сильфона)м; с жёсткость одного блока (одного сильфона), Н/мм. Усилие от одного трубопровода на противоположную неподвижную опору: F тр. суммарная сила трения в подвижных опорах, кг. Fтр. μ P z, кг ma эф. λ, кг 0 силф. эф. эффективная площадь сильфона; F F Fтр., кг коэффициент трения в подвижных опорах (принят 0,3); P z вес трубопровода длиной L.

3 Программный модуль: Расчёт настройки стартового компенсатора (Версия 9.) Алгоритм программного модуля выполнен на основании существующей методики (СП): Максимальное расстояние между неподвижными опорами (реальными или мнимыми) участка теплосети со стартовыми компенсаторами (бесканальная прокладка), определяется по формуле: σдоп. ст.тр. Lma 0,8 σ доп. предельно допустимое напряжение в трубе (σ доп. =50 Н/мм); ст.тр. площадь поперечного сечения стенки трубым; f тр. удельная сила трения оболочки трубы о грунт, Н/м. f тр. μ 0,5 sin ρ Z П D q, Н/м об. коэффициент трения оболочки о грунт (принят 0,4); φ угол естественного откоса грунта (принят 30); ρ плотность грунта, Н/м 3 ; Z глубина заложения трубопровода (расстояние от поверхности земли до оси трубопровода); П число Пи (3,); D об. наружный диаметр оболочки трубопровода; q удельный вес трубопровода, Н/м. Величина сжатия компенсатора при увеличении температуры трубопровода: L Δ L α L Tпр. Tмон. 4Eст.тр. α коэффициент линейного расширения материала (для Ст0 α=, 0-5 С -); T пр. температура прогрева (T пр. Const 70 С); T температура трубы при монтаже (изменяется от 0 до 5С); L длина участка (L<=L ma); мон. E модуль упругости материала (для стали 0 E= 0 5 Н/мм). Δ ma T мон. Формула приближённого метода: L α L T Величина сжатия компенсатора перед установкой на трубопровод: P λ L

4 Программный модуль: Раскладка матов («Г» образный компенсатор) (Версия 5.) Алгоритм программного модуля выполнен на основании существующей методики (СП): Максимальное расстояние между неподвижной опорой (реальной или мнимой) и «Г» образным компенсатором при бесканальной прокладке теплосети, определяется по формуле: доп. ст.тр. Lma σ σ доп. предельно допустимое напряжение в трубе (для стали 0 σ доп. =50 Н/мм); ст.тр. площадь поперечного сечения стенки трубым; f тр. удельная сила трения оболочки трубы о грунт, Н/м. 0,5 sin ρ Z П Dоб. μ q, Н/м коэффициент трения оболочки о грунт (принят 0,4); φ угол естественного откоса грунта (принят 30); ρ плотность грунта, Н/м 3 ; Z глубина заложения трубопровода (расстояние от поверхности земли до оси трубопровода); П число Пи (3,); D об. наружный диаметр оболочки трубопровода; q удельный вес трубопровода, Н/м. Величина температурного удлинения трубопровода при бесканальной прокладке: L Δ L α L Tma Tмон.min E ст.тр. α коэффициент линейного расширения материала (для стали 0 α=, 0-5 С -); L длина участка (L<=L ma); T ma максимальная рабочая температура трубы (принимается по Т=30С); T мон.min минимальная температура трубы при монтаже (принята 0С); E модуль упругости материала (для стали 0 E= 0 5 Н/мм).

5 . dio.naro d.ru Программный модуль:. Расчёт параметров опоры (надземная прокладка) (Версия 8.) Стандартный вариант Вариант на опорной подушке (без заглубления) Вертикальное расположение труб Вариант расчёта как неподвижной опоры Алгоритм программного модуля выполнен на основании существующей методики:. Расчёт стойки Требуемый момент сопротивления стойки: Wобщ. 00 M 0,9 σ доп., см3 M суммарный момент, действующий на стойку опоры, кгм; σ доп. предельно допустимое напряжение в сечении конструкции стойки опоры, кг/см; Суммарный момент: М Fгор. H, кгм Fгор. суммарное горизонтальное усилие, действующее на высоте H; H высота стойки. Для подвижной опоры: Fгор. μ Pz, кг коэффициент трения в подвижной опоре; Pz вертикальная нагрузка на опору. Pz n L q, кг; n количество труб на опоре; L - длина трубопровода между опорами; q удельный вес трубопровода, кг/м. Расчёт параметров опоры (надземная прокладка) Лист Листов

6 . Расчёт габаритов фундамента опоры на смятие грунта Условие устойчивости опоры: σгр. σ расч., кг/см σ гр. допустимое напряжение в грунте (сопротивление грунта), кг/см; σ расч. напряжение в грунте, создаваемое фундаментом опоры: P M M y σ расч. Σ, кг/см W W Σ P суммарная весовая нагрузка (по оси Z): ΣP P z H 0 ρбет., кг площадь подошвы опоры: a b ; a и b - габариты фундамента опоры; H высота фундамента опоры; 0 ρ бет. плотность бетона, кг/м 3 ; М момент, действующий на опору в плоскости ХZ, кгм; М y момент, действующий на опору в плоскости YZ, кгм; W момент сопротивления подошвы опоры в плоскости ХZ 3 ; W y момент сопротивления подошвы опоры в плоскости YZ 3. (осевые нагрузки вдоль оси Х, боковые вдоль оси Y, вертикальные вдоль оси Z) W M ab ba 3 Wy 6 6 F H H M F H H y 3, кгм; 0 y y 0, кгм F усилие на опору, действующее на высоте H вдоль оси X, кг; F y усилие на опору, действующее на высоте H вдоль оси Y, кг; H высота стойки; H 0 - высота фундамента опоры. 3. Проверочный расчёт габаритов фундамента опоры на опрокидывание Условие устойчивости: М М и y Мy М, кгм М момент от суммарной весовой нагрузки, действующий в плоскости ХZ, кгм; y М момент от суммарной весовой нагрузки, действующий в плоскости YZ, кгм. М Σ P a, кгм М y Σ P b, кгм Σ P суммарная весовая нагрузка (по оси Z); a и b габариты фундамента опоры. Расчёт параметров опоры (надземная прокладка) Лист Листов

7 Программный модуль: Расчёт диаметра рабочей арматуры щитовой опоры (Версия 6.) Алгоритм программного модуля выполнен на основании существующей методики: арм. 4 Расчётный диаметр рабочей арматуры: d м Π арм. площадь поперечного сечения одного стержням; П число Пи (3,). Площадь поперечного сечения одного стержня: арм. арм. общ. м арм. общ. общая требуемая площадь поперечного сечения всех рабочих стержнейм; n количество рабочих стержней. арм. Mma 00 общ. м σ доп. δ M ma максимальный момент, действующий на щит опоры, кгм; σ доп. предельно допустимые напряжения в рабочем стержне, кг/см; δ δ 0, щита δ толщина щита. щита n

8 Программный модуль: Расчёт диаметра спускного устройства (Версия 8.) Алгоритм программного модуля выполнен на основании существующей методики (СНиП): Диаметр штуцера для спуска воды из секционируемого участка трубопровода, имеющего уклон в одном направлении, определяем по формуле: L d dпр. m n 4 iпр. d пр. приведенный диаметр i пр. приведенный уклон j d jl j k dпр. L j i jl j k iпр. L k количество участков; n коэффициент, зависящий от времени спуска; m коэффициент расхода арматуры (для задвижек m=0,0). Диаметр штуцера спускного устройства обслуживающего две ветки (правую и левую) определяется по формуле: d общ. пр. лев. d d d пр. диаметр штуцера для правой ветки; d лев. диаметр штуцера для левой ветки.


03-glava_fin 17.09.03 9:50 AM Page 19 3 3. Проектирование 3.1. Основные принципы проектирования бесканальной прокладки тепловых сетей с ППУ изоляцией производства ЗАО «МосФлоулайн» Предварительно изолированные

Теоретические основы 6.0. Осевое удлинение 6.1. Допустимая длина прямого участка 6.2. Термическое предварительное натяжение 6.3. Осевое удлинение 6.1. Как известно, при изменении температуры все материалы

Занятие (часа) Расчет оптимальной толщины изоляции тепловой сети Цель теплового расчета сети - определение толщины тепловой изоляции и падения температуры на данном участке трассы. Толщину теплоизоляционного

Расчет вертикальных трубопроводов с сильфонными компенсаторами 1. Определение расчетной схемы Расчет любой конструкции начинается с выбора расчетной схемы. А) При расчете вертикального трубопровода с сильфонным

Основы проектирования 7.0. Определение диаметров рабочих труб 7.1. Тепловые потери 7.2. Состав теплотрассы 7.3. Прямые трубопроводы 7.3.1. Изгибы, ответвления 7.3.2. Определение диаметра рабочих труб 7.1.

34 Применение направляющих опор на трубопроводах с осевыми сильфонными компенсаторами Е.В. Кузин, директор ООО «АТЕКС-ИНЖИНИРИНГ», г. Иркутск; В.В. Логунов, заместитель генерального директора, В.Л. Поляков,

Лекция 5 5. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ И РЕЖИМЫ РАБОТЫ ТЕПЛОВЫХ СЕТЕЙ 5.. Основные задачи При проектировании тепловых сетей основная задача гидравлического расчета состоит в определении диаметров труб по заданным

Решения для проектирования неподвижных опор при терморасширении трубопроводов Hilti webinar, 20.05.2014 www.hilti.com Hilti Webinar 20.05.2014 1 www.hilti.com Hilti Webinar 20.05.2014 2 Программа вебинара:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Утверждено на

Некоммерческое Партнерство «Российское Теплоснабжение» Стандарт организации НП «РТ» СТО НП «РТ» 70264433-4-4-2009 ТРЕБОВАНИЯ К КАЧЕСТВУ ПРОЕКТИРОВАНИЯ ТЕПЛОВЫХ СЕТЕЙ В ППУ ИЗОЛЯЦИИ Документ системы качества

Общество с ограниченной ответственностью «Баутехнолоджи» П Р О Ч Н О С Т Н О Й Р А С Ч Е Т навесной фасадной системы с воздушным зазором АЛЬТ-ФАСАД-11 для Жилого комплекса, расположенного по адресу: Московская

Расчет монолитной наружной стены подвала нужно ввести вычисляется в этих пунктах нужно проверить выполнение условий Исходные данные 1 Коэффициенты 1.1 Коэффициент надежности по нагрузке (для железобетона

Название организации Расчёт на прочность и устойчивость обечайки резервуара от действия опорных нагрузок Название проекта Шифр: Выполнил: Сергеев В.С. 1. Расчёт на прочность. Расчёт на прочность и устойчивость

535 - Отдельный фундамент под железобетонную колонну 1 2 Программа предназначена для проектирования отдельного фундамента под железобетонную колонну согласно СП 52-101-03 или СНиП 2.03.01-84* или

ОТЧЕТ ОБЪЕКТ: РАЗДЕЛ: Станция перекачки сточных вод СТАДИЯ: Рабочая документация ЗАКАЗЧИК: ИСПОЛНИТЕЛЬ: Козлов Алексей Владимирович 201_ г. /Козлов А.В./ Содержание Пояснительная записка 2 Приложение 1.

Корпорація «Енергоресурс-інвест» Временные указания по применению осевых сильфонных компенсаторов производства корпорации «Енергоресурс-інвест» для тепловых сетей Рекомендации по проектированию и монтажу

48 Приложение 1 Таблица П 1.1. Динамические характеристики стальных водогазопроводных труб по ГОСТ 36-75* насосных систем водяного отопления при скорости воды в них 1 м/с Диаметр труб, мм Условного прохода

Методика расчёта основывается на данных, приведённых в СНиП 2.01.07-85 и СНиП 2.03.06-85. Данные, полученные в результате проведённых расчётов, должны быть проверены и утверждены специалистом по расчёту

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет Кафедра «Теплогазоснабжение и вентиляция» В. М. Копко Д. Б. Муслина ПРОЕКТИРОВАНИЕ ТЕПЛОВЫХ СЕТЕЙ С ГИБКИМИ

Осевые сильфонные компенсаторы anfo из нержавеющей стали Описание и область применения дах систем отопления многоэтажных зданий. Осевые компенсаторы состоят из сильфона (гофрированного цилиндра), выполненного

Задача 1. Определить скорость потока воды в трубопроводе. Расход воды составляет 90 м 3 /час. Диаметр трубопровода 0,01м. Скорость потока воды в трубопроводе равна: w=(4 Q) / (π d) = ((4 90) / (3,14

БАК Расчет на прочность Инв. подл. Взам. Инв. Инв. дубл. Перв. примен. Содержание 1 Исходные данные для расчета...4 1.1 Расчетные параметры...4 1.2 Допускаемые напряжения...4 1.3 Давление и температура

516 - Свайный фундамент с ленточным ростверком 1 2 Программа предназначена для проектирования свайного фундамента с ленточным ростверком согласно СП 50-102-2003 или СНиП 2.02.03-85 . Предусмотрены

536 Поле столбчатых фундаментов под железобетонные колонны 1 2 Программа предназначена для проектирования поля столбчатых фундаментов под железобетонные колонны согласно СП 52-101-03 или СНиП 2.03.01-84*

Калькулятор участка тепловой сети. Калькулятор участка тепловой сети предназначена для выполнения контрольного примера расчета потерь теплоносителя и тепла от участка тепловой сети с произвольными характеристиками.

Расчет кожухотрубного теплообменника Общие сведения Кожухотрубные теплообменники наиболее широко распространены в пищевых производствах. Это объясняется следующими их достоинствами компактностью, невысоким

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР СОСУДЫ И АППАРАТЫ. АППАРАТЫ КОЛОННОГО ТИПА НОРМЫ И МЕТОДЫ РАСЧЕТА НА ПРОЧНОСТЬ ГОСТ 2475781 (СТ СЭВ 164579) ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ Москва ГОСУДАРСТВЕННЫЙ

Монтаж системы внутреннего водопровода Полимерные и металлополимерные трубы более удобны при монтаже, чем металлические. Они более легкие (вес на порядок меньше металлических), их легче гнуть, сгибать.

Пример расчетов гидравлических потерь напора на узлах установки расходомеров фирмы "Взлет" (Расчеты выполняются на основании документа "Методика гидравлического расчета конфузорно-диффузорных переходов.

2006 г. WWW.TEPLOV.RU 1 Критерии качества тепловой изоляции. 1. Плотное и ровное сопряжение элементов покрытия с отбортовкой. Соединение через отбортовку обеспечивает пространственную прочность защитного

Изм. Кол.уч док. Подпись Дата 1.1 Общие данные Ведомость чертежей Наименование а 1 Общие данные (на 8-ми листах) 2 План дома 3 Армирование плиты фундамента. Арматура А-500С. Плита 300 мм. 4 Армирование

Расчёты. Статические расчёты. Методика расчёта основывается на данных, приведённых в СНиП 2.01.07-85 и СНиП 2.03.06-85. Данные, полученные в результате проведённых расчётов, должны быть проверены и утверждены

Контрольные тесты. Гидравлика (вариант А) ВНИМАНИЕ! При проведении вычислений рекомендуется принимать ускорение свободного падения g = 10 м/с 2, а плотность жидкости = 1000 кг/м 3. 1. Чему равняется давление

Пример расчетов гидравлических потерь напора на узлах установки расходомеров фирмы "Взлет" (Расчеты выполняются на основании документа "Методика гидравлического расчета конфузорно-диффузорных переходов.

11 РАСЧЁТ СЖАТЫХ ЭЛЕМЕНТОВ 11.1 Общие сведения К сжатым элементам относят: колонны; верхние пояса ферм, загруженные по узлам, восходящие раскосы и стойки решетки ферм; элементы оболочек; элементы фундамента;

Лекция 5 Цель: изучение потерь на трение по длине и потерь на местных сопротивлениях. Задачи: классифицировать потери и дать методику их расчета. Желаемый результат: Студенты должны знать: особенности

12.1.1 Общие сведения/многослойная система/технология прокладки...12 / 1-2 12.1.2 Обзор преимуществ и недостатков...12 / 3 12.1.3 Допустимая длина укладки Lmax одинарной трубы при традиционной укладке...12

Проверочный расчёт существующего ленточного фундамента на свайном основании (возможность надстройки 3-го этажа) по I группе предельных состояний В СЕЧЕНИИ 21-21 Основные характеристики грунтов: Нормативные

Расчет на прочность при кручении 1. При кручении стержня круглого поперечного сечения напряженное состояние материала во всех точках, за исключением точек на оси стержня, ОТВЕТ: 1) линейное (одноосное

Лекция 12 Проектирования фундаментов по предельным состояниям До 1962 г. фундаменты проектировали по допускаемым нагрузкам, а затем перешли к проектированию по предельным состояниям. Сейчас в расчете оснований

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «ПЕТРОЗАВОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ПетрГУ) Физико-технический

ОГЛАВЛЕНИЕ 1 РАСЧЕТНЫЕ ПАРАМЕТРЫ 4 КОНСТРУИРОВАНИЕ И РАСЧЕТ ВЕРХНЕЙ ЧАСТИ КОЛОННЫ 5 1 Компоновка 5 Проверка устойчивости в плоскости изгиба 8 3 Проверка устойчивости из плоскости изгиба 8 3 КОНСТРУИРОВАНИЕ

Технология Hilti REBAR решение задач. Примеры. HILTI REBAR examples of tasks 1 Задача 1 Дано: Фундаментная плита, произошло смещение арматурных выпусков под колонну, необходимо восстановить выпуска в проектное

Кузьмичев Сергей Дмитриевич 2 СОДЕРЖАНИЕ ЛЕКЦИИ 10 Элементы теории упругости и гидродинамики. 1. Деформации. Закон Гука. 2. Модуль Юнга. Коэффициент Пуассона. Модули всестороннего сжатия и одностороннего

1. Обечайка цилиндрическая 1 1.1. Исходные данные Материал: 09Г2С Внутр. диаметр, D: 800 мм Толщина стенки, s: 6 мм Прибавка для компенсации коррозии и эрозии, c 1: 2 мм Прибавка для компенсации минусового

ОПОРЫ КОЛОННЫХ АППАРАТОВ ИЗДАТЕЛЬСТВО ТГТУ УДК 66.01.001. ББК Л11-5-04я73-5 К65 Утверждено Редакционно-издательским советом университета Р е ц е н з е н т Доцент кафедры ТО и ПТ Е.В. Хабарова С о с т а

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ТЮМЕНСКАЯ ГОСУДАРСТВЕННАЯ АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ АКАДЕМИЯ КАФЕДРА "СТРОИТЕЛЬНАЯ МЕХАНИКА" СЕКЦИЯ "СОПРОТИВЛЕНИЕ

Расчет прочности фундамента Взам.инв. Инв. дубл. Подп.и дата Разраб. Лит. ов Пров. 2 8 Т.контр. Н.контр. Утв. Нижний Новгород, 2008 г. Расчет прочности фундамента Содержание 1 Исходные данные 3 2 Расчет

U-Tubes Heat Exchanger-Russian Final Report ГОСТ Р 52857/52630 Rev.02 Uri Katanov Pressure Vessel Engineer, FEA and CFD Analyst M.Sc.-MEng P.Eng Canada 1 СОДЕРЖАНИЕ Исходные данные для расчета..3 Сводные

12 июня 2017 г. Совместный процесс конвекции и теплопроводности называется конвективным теплообменом. Естественная конвекция вызывается разностью удельных весов неравномерно нагретой среды, осуществляется

ТЕМА1. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ СИСТЕМЫ ВОДЯНОГО ОТОПЛЕНИЯ 1.1. Способы гидравлического расчета трубопроводов систем водяного отопления При расчете трубопроводов систем водяного отопления используются различные

1. Содержание 1. Введение... 4 2. Исходная информация и постановка задач... 5 3. Задачи расчетных исследований... 8 4. Нагрузки и воздействия. Основные расчетные положения... 9 4.1. Виды нагрузок на конструкцию

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Владимирский государственный университет Кафедра сопротивления материалов МЕТОДИЧЕСКИЕ

570 Шпунтовая стенка 1 2 Программа предназначена для проектирования и расчёта шпунтовой стенки свободно защемленной или заделанной в грунте с возможностью установки анкеров. В качестве нагрузок, кроме

Гидравлика 63 3.18. ПОТЕРИ НАПОРА В МЕСТНЫХ СОПРОТИВЛЕНИЯХ Как уже указывалось, помимо потерь напора по длине потока могут возникать и так называемые местные потери напора. Причиной последних, например,

Республиканская олимпиада. 9 класс. Брест. 004 г. Условия задач. Теоретический тур. Задание 1. «Автокран» Автокран массы M = 15 т с габаритами кузова = 3,0 м 6,0 м имеет легкую выдвижную телескопическую

Отчет 5855-1707-8333-0815 Расчет прочности и устойчивости стального стержня по СНиП II-3-81* Данный документ составлен на основе отчета о проведенном пользователем admin расчете металлического элемента

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» УТВЕРЖДАЮ Директор

Инструкция по проектированию подпорных стен из блоков LammiMuuri ОГЛАВЛЕНИЕ 1. КОНСТРУКЦИЯ И СВОЙСТВА БЛОКОВ «ЛАММИМУУРИ» ДЛЯ КЛАДКИ ПОДПОРНЫХ СТЕН. ПРИМЕНЕНИЕ 3. ТИПЫ СТЕН 4. РАСЧЁТЫ 4.1. Свойства материалов

2 МОНТАЖНЫЕ И СПЕЦИАЛЬНЫЕ РАБОТЫ В СТРОИТЕЛЬСТВЕ 3 "08 Наука производству éòó ÂÌÌÓÒÚË apple Ò ÂÚ ÒÚ Î Ì ı ÍÓÌÒÚappleÛ͈ËÈ ËÁ ÚÓÌÍÓÒÚÂÌÌ ı ÌÛÚ ı ÔappleÓÙËÎÂÈ Э.Л. АЙРУМЯН, канд. техн. наук (ЗАО «ЦНИИПСК

ООО «Драфт» Поверочный расчет фундаментов башни высотой Н=95м, для размещения антенного оборудования Генеральный директор Главный инженер проекта г. Санкт-Петербург 2016 г. Содержание 1. Исходные данные..

ГОСТ ИСО 7904-2-2001 Подшипники скольжения. Условные обозначения. Часть 2. Применение Принявший орган: Госстандарт России Дата введения 01.07.2002 1РАЗРАБОТАН Межгосударственным техническим комитетом по

Контрольные задания по сопротивление материалов для студентов заочной формы обучения Составитель: С.Г.Сидорин Сопротивление материалов. Контрольные работы студентов заочников: Метод. указания /С.Г.Сидорин,

10.1. Поверочный расчёт основания и фундаментов под стену по оси «Б» (шурф 4) Сбор нагрузок выполнен при помощи программы «Скад 11.5». На фундамент в уровне его обреза действуют следующие нагрузки: NX(NY)=

ЛЕКЦИЯ 8 5. Конструирование и расчет элементов ДК из нескольких материалов ЛЕКЦИЯ 8 Расчет клееных элементов из древесины с фанерой и армированных элементов из древесины следует выполнять по методу приведенного

КН 901-11-2Т Вариант 1 Вариант 2 Вариант 3 Вариант 4 Вариант 5 Вариант 6 Вариант 7 Вариант 8 Вариант 9 Вариант 10. Вариант 11 Вариант 12 Вариант 13 Вариант 14 Вариант 15 Вариант 16 Вариант 17 Вариант 18

Пассат 1.08 ООО НТП «Трубопровод» Омский Государственный Технический Университет ПРОИЗВОДСТВО ЦЕОЛИТА Сушилка распылительная РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА и дата Взам. инв. Инв. дубл. и дата Омск 2012

РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ БУРОЗАВИНЧИВАЕМЫХ СВАЙ KRINNER В СЕЙСМИЧЕСКИХ РАЙОНАХ 2.1 При проектировании свайных фундаментов в сейсмических районах кроме требований СНиП РК 5.01-03-2002 «Свайные фундаменты»,

Технико-экономическое обоснование Выполнение тепловых и гидравлических расчетов с заменой насоса по их результатам. СОДЕРЖАНИЕ. 1. Исходные данные. 2. Расчет годовой экономии электроэнергии 3. Расчет экономического

Методы моделирования и расчета свайных фундаментов в SCAD Office Виктор Сергеевич Михайлов Руководитель новосибирского центра технической поддержки SCAD Office Андрей Владимирович Теплых Руководитель самарского

ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ТЕПЛОВЫХ СЕТЕЙ

В задачу гидравлического расчета входят:

Определение диаметра трубопроводов;

Определение падения давления (напора);

Определение давлений (напоров) в различных точках сети;

Увязка всех точек сети при статическом и динамическом режимах с целью обеспечения допустимых давлений и требуемых напоров в сети и абонентских системах.

По результатам гидравлического расчета можно решить следующие задачи.

1. Определение капитальных затрат, расхода металла (труб) и основного объема работ по прокладке тепловой сети.

2. Определение характеристик циркуляционных и подпиточных насосов.

3. Определение условий работы тепловой сети и выбора схем присоединения абонентов.

4. Выбор автоматики для тепловой сети и абонентов.

5. Разработка режимов эксплуатации.

a. Схемы и конфигурации тепловых сетей.

Схема тепловой сети определяется размещением источников тепла по отношению к району потребления, характером тепловой нагрузки и видом теплоносителя.

Удельная протяженность паровых сетей на единицу расчетной тепловой нагрузки невелика, поскольку потребители пара – как правило, промышленные потребители – находятся на небольшом расстоянии от источника тепла.

Более сложной задачей является выбор схемы водяных тепловых сетей вследствие большой протяженности, большого количества абонентов. Водяные ТС менее долговечны, чем паровые вследствие большей коррозии, больше чувствительны к авариям из-за большой плотности воды.

Рис.6.1. Однолинейная коммуникационная сеть двухтрубной тепловой сети

Водяные сети разделяют на магистральные и распределительные. По магистральным сетям теплоноситель подается от источников тепла в районы потребления. По распределительным сетям вода подается на ГТП и МТП и к абонентам. Непосредственно к магистральным сетям абоненты присоединяются очень редко. В узлах присоединения распределительных сетей к магистральным устанавливаются секционирующие камеры с задвижками. Секционирующие задвижки на магистральных сетях обычно устанавливаются через 2-3 км. Благодаря установке секционирующих задвижек уменьшаются потери воды при авариях ТС. Распределительные и магистральные ТС с диаметром меньше 700 мм делаются обычно тупиковыми. В случае аварий для большей части территории страны допустим перерыв в теплоснабжении зданий до 24 часов. Если же перерыв в теплоснабжении недопустим, необходимо предусматривать дублирование или закольцовку ТС.

Рис.6.2. Кольцевая тепловая сеть от трех ТЭЦ Рис.6.3. Радиальная тепловая сеть

При теплоснабжении крупных городов от нескольких ТЭЦ целесообразно предусмотреть взаимную блокировку ТЭЦ путем соединения их магистралей блокировочными связями. В этом случае получается кольцевая тепловая сеть с несколькими источниками питания. Подобная схема имеет более высокую надежность, обеспечивает передачу резервирующих потоков воды при аварии на каком-либо участке сети. При диаметрах магистралей, отходящих от источника тепла 700 мм и менее, обычно применяют радиальную схему тепловой сети с постепенным уменьшением диаметра трубы по мере удаления от источника и снижения присоединенной нагрузки. Такая сеть наиболее дешевая, но при аварии теплоснабжение абонентов прекращается.

b. Основные расчетные зависимости

Рис.6.1. Схема движения жидкости в трубе

Скорость жидкости в трубопроводах невелика, поэтому кинетической энергией потока можно пренебречь. Выражение H =p /rg называется пьезометрическим напором, а сумма высоты Z и пьезометрического напора называют полным напором.

H 0 =Z + p /rg = Z + H. (6.1)

Падение давления в трубе представляет собой сумму линейных потерь давления и потерь давления на местных гидравлических сопротивлениях.

Dp = Dp л + Dp м. (6.2)

В трубопроводах Dp л =R л L , где R л – удельное падение давления, т.е. падение давление единицы длины трубы, определяемое по формуле д"Арси.

. (6.3)

Коэффициент гидравлического сопротивления l зависит от режима течения жидкости и абсолютной эквивалентной шероховатости стенок трубы к э . Можно в расчетах принимать следующие значения к э – в паропроводах к э =0.2 мм; в водяных сетях к э =0.5 мм; в конденсатопроводах и системах ГВС к э =1 мм.

При ламинарном течении жидкости в трубе (Re < 2300)

В переходной области 2300 < Re < 4000

. (6.5)

При

. (6.6)

Обычно в тепловых сетях Re > Re пр , поэтому (6.3) можно привести к виду

, где . (6.7)

Потери давления на местных сопротивлениях определяются по формуле

. (6.8)

Значения коэффициента местного гидравлического сопротивления x приводятся в справочниках. При гидравлических расчетах можно учитывать потери давления на местных сопротивлениях через эквивалентную длину.

Тогда , где a=l экв /l – доля местных потерь давления.

a. Порядок гидравлического расчета

Обычно при гидравлическом расчете задаются расход теплоносителя и суммарное падение давления на участке. Требуется найти диаметр трубопровода. Расчет состоит из двух этапов – предварительного и поверочного.

Предварительный расчет.

2. Задаются долей местных падений давления a =0.3...0.6.

3. Оценивают удельные потери давления

. Если падение давления на участке неизвестно, то задаются величиной R л < 20...30 Па/м.

4. Рассчитывают диаметр трубопровода из условия работы в турбулентном режиме Для водяных тепловых сетей плотность принимают равной 975 кг/м 3 .

Из (6.7) найдем

, (6.9)

где r – средняя плотность воды на данном участке. По найденному значению диаметру выбирают по ГОСТ трубу с ближайшим внутренним диаметром. При выборе трубы указывают либо d у и d , либо d н и d .

2. Поверочный расчет.

Для концевых участков следует проверить режим движения. Если окажется, что режим движения переходный, то, если есть возможность, нужно уменьшить диаметр трубы. Если это невозможно, то нужно вести расчет по формулам переходного режима.

1. Уточняются значения R л ;



2. Уточняются типы местных сопротивлений и их эквивалентные длины. Задвижки устанавливаются на выходе и входе коллектора, в местах присоединения распределительных сетей к магистральным, ответвлений к потребителю и у потребителей. Если длина ответвления менее 25 м, то допускается устанавливать задвижку только у потребителя. Секционирующие задвижки устанавливаются через 1 – 3 км. Кроме задвижек возможны и другие местные сопротивления – повороты, изменения сечения, тройники, слияние и разветвление потока и т.д.

Для определения количества температурных компенсаторов длинны участков делятся на допустимое расстояние между неподвижными опорами. Результат округляется до ближайшего целого числа. Если на участке есть повороты, то они могут быть использованы для самокомпенсации температурных удлинений. При этом количество компенсаторов уменьшается на число поворотов.

5. Определяются потери давления на участке. Для закрытых систем Dp уч =2R л (l+l э).

Для открытых систем предварительный расчет ведется по эквивалентному расходу

При поверочном расчете удельные линейные потери давления рассчитываются отдельно для подающего и обратного трубопроводов для действительных расходов.

, .

По окончании гидравлического расчета строится пьезометрический график.

a. Пьезометрический график тепловой сети

На пьезометрическом графике в масштабе нанесены рельеф местности, высота присоединенных зданий, напор в сети. По этому графику легко определить напор и располагаемый напор в любой точке сети и абонентских системах.

За горизонтальную плоскость отсчета напоров принят уровень 1 – 1. Линия П1 – П4 – график напоров подающей линии. Линия О1 – О4 – график напоров обратной линии. Н о1 – полный напор на обратном коллекторе источника; Нсн – напор сетевого насоса; Нст – полный напор подпиточного насоса, или полный статический напор в тепловой сети; Нк – полный напор в т.К на нагнетательном патрубке сетевого насоса; DHт – потеря напора в теплоприготовительной установке; Нп1 – полный напор на подающем коллекторе, Нп1= Нк - DHт. Располагаемый напор сетевой воды на коллекторе ТЭЦ Н1=Нп1-Но1. Напор в любой точке сети i обозначается как Нпi, Hoi – полные напоры в прямом и обратном трубопроводе. Если геодезическая высота в точке i есть Zi, то пьезометрический напор в этой точке есть Нпi – Zi, Hoi – Zi в прямом и обратном трубопроводах, соответственно. Располагаемый напор в точке i есть разность пьезометрических напоров в прямом и обратном трубопроводах – Нпi – Hoi. Располагаемый напор в ТС в узле присоединения абонента Д есть Н4 = Нп4 – Но4.

Рис.6.2. Схема (а) и пьезометрический график (б) двухтрубной тепловой сети

Потеря напора в подающей линии на участке 1 – 4 есть . Потеря напора в обратной линии на участке 1 – 4 есть . При работе сетевого насоса напор Нст подпиточного насоса регулируется регулятором давления до Но1. При остановке сетевого насоса в сети устанавливается статический напор Нст, развиваемый подпиточным насосом. При гидравлическом расчете паропровода можно не учитывать профиль паропровода из-за малой плотности пара. Потери напора у абонентов, например зависит от схемы присоединения абонента. При элеваторном смешении DН э= 10…15 м, при безэлеваторном вводе – Dнб э =2…5 м, при наличии поверхностных подогревателей DН п=5…10 м, при насосном смешении DН нс= 2…4 м.

Требования к режиму давления в тепловой сети:

b. в любой точке системы давление не должно превышать максимально допустимой величины. Трубопроводы системы теплоснабжения рассчитаны на 16 ата, трубопроводы местных систем – на давление 6-7 ата;

c. во избежание подсосов воздуха в любой точке системы давление должно быть не менее 1.5 ата. Кроме того это условие необходимо для предупреждения кавитации насосов;

d. в любой точке системы давление должно быть не меньше давления насыщения при данной температуре во избежание вскипания воды;

6.5. Особенности гидравлического расчета паропроводов.

Диаметр паропровода рассчитывают исходя либо из допустимых потерь давления, либо из допустимой скорости пара. Предварительно задается плотность пара на расчетном участке.

Расчет по допустимым потерям давления.

Оценивают , a = 0.3...0.6. По (6.9) рассчитывают диаметр трубы.

Задаются скоростью пара в трубе. Из уравнения для расхода пара – G=wrF находят диаметр трубы.

По ГОСТу подбирается труба с ближайшим внутренним диаметром. Уточняются удельные линейные потери и виды местных сопротивлений, рассчитываются эквивалентные длины. Определяется давление на конце трубопровода. Рассчитываются потери тепла на расчетном участке по нормируемым потерям тепла.

Qпот=q l l , где q l – потери тепла на единицу длины при заданной разности температур пара и окружающей среды с учетом потерь тепла на опорах, задвижках и т.п. Если q l определено без учета потерь тепла на опорах, задвижках и т.п., то

Qпот=q l (tср – to)(1+b), где tср - средняя температура пара на участке, to – температура окружающей среды, зависящая от способа прокладки. При наземной прокладке to = tнo , при подземной бесканальной прокладке to = tгр (температура грунта на глубине укладки), при прокладке в проходных и полупроходных каналах to =40…50 0 С. При прокладке в непроходных каналах to = 5 0 С. По найденным потерям тепла определяют изменение энтальпии пара на участке и значение энтальпии пара в конце участка.

Diуч=Qпот/D, iк=iн - Diуч.

По найденным значениям давления и энтальпии пара в начале и конце участка определяется новое значение средней плотности пара rср = (rн + rк)/2 . Если новое значение плотности отличается от ранее заданного более чем на 3 %, то поверочный расчет повторяют с уточнением одновременно и .

a. Особенности расчета конденсатопроводов

При расчете конденсатопровода необходимо учитывать возможное парообразование при понижении давления ниже давления насыщения (вторичный пар), конденсацию пара за счет тепловых потерь и пролетный пар после конденсатоотводчиков. Количество пролетного пара определяется по характеристике конденсатоотводчика. Количество сконденсировавшегося пара определяется по потере тепла и теплоте парообразования. Количество вторичного пара определяется по средним параметрам на расчетном участке.

Если конденсат близок к состоянию насыщения, то расчет нужно вести как для паропровода. При транспорте переохлажденного конденсата расчет выполняется так же, как и для водяных сетей.

b. Режим давления в сети и выбор схемы абонентского ввода.

1. Для нормальной работы потребителей тепла напор в обратной линии должен быть достаточен для заполнения системы, Ho > DHмс.

2. Давление в обратной линии должно быть ниже допустимого, po > pдоп.

3. Действительный располагаемый напор на абонентском вводе должен быть не меньше расчетного, DHаб DHрасч.

4. Напор в подающей линии должен быть достаточен для заполнения местной системы, Hп – DHаб > Hмс.

5. В статическом режиме, т.е. при выключении циркуляционных насосов, не должно быть опорожнения местной системы.

6. Статическое давление не должно превышать допустимое.

Статическое давление это давление, которое устанавливается после отключения циркуляционных насосов. Уровень статического давления (напора) обязательно указывается на пьезометрическом графике. Величина этого давления (напора) устанавливается исходя из ограничения величины давления для отопительных приборов и не должна превышать 6 ати (60 м). При спокойном рельефе местности уровень статического давления может быть одним и тем же для всех потребителей. При больших колебания рельефа местности может быть два, но не более трех статических уровней.

Рис.6.3. График статических напоров системы теплоснабжения

На рис.6.3 изображен график статических напоров и схема системы теплоснабжения. Высота зданий A, B и С одинакова и равна 35 м. Если провести линию статического напора на 5 метров выше здания С, то здания В и А окажутся в зоне напора в 60 и 80 м. Возможны следующие решения.

7. Отопительные установки зданий А присоединяются по независимой схеме, а в зданиях В и С – по зависимой. В этом случае для всех зданий устанавливается общая статическая зона. Водо-водяные подогреватели будут находиться под напором в 80 м, что допустимо с точки зрения прочности. Линия статических напоров – S - S.

8. Отопительные установки здания С присоединяются по независимой схеме. В этом случае полный статический напор можно выбрать по условиям прочности установок зданий А и В – 60 м. Этот уровень обозначен линией М – М.

9. Отопительные установки всех зданий присоединены по зависимой схеме, но зона теплоснабжения разделена на две части – одна на уровне М-М для зданий А и В, другая на уровне S-S для здания С. Для этого между зданиями В и С устанавливается обратный клапан 7 на прямой линии и подпиточный насос верхней зоны 8 и регулятор давления 10 на обратной линии. Поддержание заданного статического напора в зоне С осуществляется подпиточным насосом верхней зоны 8 и регулятором подпитки 9. Поддержание заданного статического напора в нижней зоне осуществляется насосом 2 и регулятором 6.

При гидродинамическом режиме работы сети вышеперечисленные требования тоже должны соблюдаться в любой точке сети при любой температуре воды.

Рис.6.4. Построение графика гидродинамических напоров системы теплоснабжения

10. Построение линий максимальных и минимальных пьезометрических напоров.

Линии допустимых напоров следуют за рельефом местности, т.к. принято, что трубопроводы прокладываются в соответствии с рельефом. Отсчет – от оси трубы. Если оборудование имеет существенные размеры по высоте, то минимальный напор отсчитывают от верхней точки, а максимальный – от нижней.

1.1. Линия Пmax – линия максимально допустимых напоров в подающей линии.

Для пиковых водогрейных котлов максимал ьно допустимый напор отсчитывают от нижней точки котла (принимают, что она находится на уровне земли), а минимально допустимый напор – от верхнего коллектора котла. Допустимое давление для стальных водогрейных котлов 2.5 Мпа. С учетом потерь принято на выходе из котла Hmax=220 м. Максимально допустимый напор в подающей линии ограничен прочностью трубопровода (рmax=1.6 Мпа). Поэтому на входе в подающую линию Нmax=160 м.

a. Линия Оmax – линия максимально допустимых напоров в обратной линии.

По условию прочности водоводяных подогревателей максимальное давление не должно быть выше 1.2 Мпа. Поэтому максимальное значение напора равно 140 м. Величина напора для отопительных установок не может превышать 60 м.

Минимально допустимый пьезометрический напор определяют по температуре кипения, превышающую на 30 0 С расчетную температуру на выходе из котла.

b. Линия Пmin – линия минимально допустимого напора в прямой линии

Минимально допустимый напор на выходе из котла определяется из условия невскипания в верхней точке – для температуры 180 0 С. Устанавливается 107 м. Из условия невскипания воды при температуре 150 0 С минимальный напор должен быть 40 м.

1.4. Линия Оmin – линия минимально допустимого напора в обратной линии. Из условия недопустимости подсосов воздуха и кавитации насосов принят минимальный напор в 5 м.

Действительные линии напоров в прямой и обратной линиях ни при каких режимах не могут выходить за пределы линий максимальных и минимальных напоров.

Пьезометрический график дает полное представление о действующих напорах при статическом и гидродинамическом режимах. В соответствии с этой информацией выбирается тот или иной метод присоединения абонентов.

Рис.6.5. Пьезометрический график

Здание 1. Располагаемый напор больше 15 м, пьезометрический – меньше 60 м. Можно отопительную установку присоединить по зависимой схеме с элеваторным узлом.

Здание 2. В этом случае также можно применить зависимую схему, но т.к. напор в обратной линии меньше высоты здания в узле присоединения нужно установить регулятор давления "до себя". Перепад давления на регуляторе должен быть больше разницы между высотой установки и пьезометрическим напором в обратной линии.

Здание 3. Статический напор в этом месте больше 60 м. Лучше всего применить независимую схему.

Здание 4. Располагаемый напор в этом месте меньше 10 м. Поэтому элеватор работать не будет. Нужно устанавливать насос. Его напор должен быть равен потерям напора в системе.

Здание 5. Нужно использовать независимую схему – статический напор в этом месте больше 60 м.

6.8. Гидравлический режим тепловых сетей

Потери давления в сети пропорциональны квадрату расхода

Пользуясь формулой для расчета потерь давления, найдем S.

.

Потери напора в сети определяются как , где .

При определении сопротивления всей сети действуют следующие правила.

1. При последовательном соединении элементов сети суммируются их сопротивления S .

S S =Ssi .

11. При параллельном соединении элементов сети суммируются их проводимости.

. .

Одна из задач гидравлического расчета ТС – определение расхода воды у каждого абонента и в сети в целом. Обычно известны: схема сети, сопротивление участков и абонентов, располагаемый напор на коллекторе ТЭЦ или котельной.

Рис. 6.6. Схема тепловой сети

Обозначим S I – S V – сопротивления участков магистрали; S 1 – S 5 – сопротивления абонентов вместе с ответвлениями; V – суммарный расход воды в сети, м 3 /с; Vm – расход воды через абонентскую установку m ; SI-5 – сопротивление элементов сети от участка I до ответвления 5; SI-5 =S I + S 1-5, где S 1-5 – суммарное сопротивление абонентов 1-5 с соответствующими ответвлениями.

Расход воды через установку 1 найдем из уравнения

, отсюда .

Для абонентской установки 2

. Разность расходов найдем из уравнения

, где . Отсюда

.

Для установки 3 получим

Сопротивление тепловой сети со всеми ответвлениями от абонента 3 до последнего абонента 5 включительно; , - сопротивление участка III магистрали.

Для некоторого m -го потребителя из n относительный расход воды находится по формуле

. По этой формуле можно найти расход воды через любую абонентскую установку, если известен суммарный расход в сети и сопротивления участков сети.

12. Относительный расход воды через абонентскую установку зависит от сопротивления сети и абонентских установок и не зависит от абсолютного значения расхода воды.

13. Если к сети присоединены n абонентов, то отношение расходов воды через установки d и m , где d < m , зависит только от сопротивления системы, начиная от узла d до конца сети, и не зависит от сопротивления сети до узла d .

Если на каком-либо участке сети изменится сопротивление, то у всех абонентов, расположенных между этим участком и концевой точкой сети, расход воды изменится пропорционально. В этой части сети достаточно определить степень изменения расхода только у одного абонента. При изменении сопротивления любого элемента сети изменится расход как в сети, так и у всех потребителей, что приводит к разрегулировке. Разрегулировки в сети бывают соответственные и пропорциональные. При соответственной разрегулировке совпадает знак изменения расходов. При пропорциональной разрегулировке совпадает степень изменения расходов.

Рис. 6.7. Изменение напоров сети при отключении одного из потребителей

Если от тепловой сети отключится абонент Х, то суммарное сопротивление сети увеличится (параллельное соединение). Расход воды в сети уменьшится, потери напора между станцией и абонентом Х уменьшатся. Поэтому график напора (пунктир) пойдет положе. Располагаемый напор в точке Х увеличится, поэтому расход в сети от абонента Х до концевой точки сети увеличится. У всех абонентов от точки Х до концевой точки степень изменения расхода будет одинакова – пропорциональная разрегулировка.

У абонентов между станцией и точкой Х степень изменения расхода будет разной. Минимальная степень изменения расхода будет у первого абонента непосредственно у станции – f =1. По мере удаления от станции f > 1 и увеличивается. Если на станции изменится располагаемый напор, то суммарный расход воды в сети, а также расходы воды у всех абонентов изменятся пропорционально корню квадратному из располагаемого напора на станции.

6.9. Сопротивление сети.

Суммарная проводимость сети

, отсюда

.

По аналогии

и

. Расчет сопротивления сети ведется от наиболее удаленного абонента.

a. Включение насосных подстанций.

Насосные подстанции могут устанавливаться на подающем, обратном трубопроводах,

а также на перемычке между ними. Сооружение подстанций вызывается неблагоприятным рельефом, большой дальностью передачи, необходимостью увеличения пропускной способностью и т.д.

а). Установка насоса на подающей или обратной линиях.

Рис.6.8. Установка насоса на подающей или последовательной линиях (последовательная работа)

При установке насосной подстанции (НП) на подающей или обратной линиях расходы воды у потребителей, расположенных между станцией и НП уменьшаются, а у потребителей после НП – возрастают. В расчетах насос учитывается как некоторое гидравлическое сопротивление. Расчет гидравлического режима сети с НП ведут методом последовательных приближений.

Задаются отрицательным значением гидравлического сопротивления насоса

Рассчитывают сопротивление в сети, расходы воды в сети и у потребителей

Уточняются расход воды и напор насоса и его сопротивление по (*).

Рис.6.10. Суммарные характеристики последовательно и параллельно включенных насосов

При параллельном включении насосов суммарная характеристика получается путем суммирования абсцисс характеристик. При последовательном включении насосов суммарная характеристика получается суммированием ординат характеристик. Степень изменения подачи при параллельном включении насосов зависит от вида характеристики сети. Чем меньше сопротивление сети, тем эффективнее параллельное включение и наоборот.

Рис.6.11. Параллельное включение насосов

При последовательном включении насосов суммарная подача воды всегда больше, чем подача воды каждым из насосов в отдельности. Чем больше сопротивление сети, тем эффективнее последовательное включение насосов.

б). Установка насоса на перемычке между подающей и обратной линиях.

При установке насоса на перемычке температурный режим до и после НП неодинаков.

Для построения суммарной характеристики двух насосов предварительно характеристику насоса А переносят в узел 2, где установлен насос Б (см.рис.6.12). На приведенной характеристике насоса А2 - 2 напоры при любом расходе равны разности действительного напора этого насоса и потери напора в сети С для этого же расхода.

. После приведения характеристик насосов А и Б к одному и тому же общему узлу они складываются по правилу сложения параллельно работающих насосов. При работе одного насоса Б напор в узле 2 равен , расход воды . При подключении второго насоса А напор в узле 2 возрастает до , а суммарный расход воды увеличивается до V> . Однако непосредственная подача насоса Б при этом уменьшается до .

Рис.6.12. Построение гидравлической характеристики системы с двумя насосами в разных узлах

a. Работа сети с двумя источниками питания

Если ТС питается от нескольких источников тепла, то в магистральных линиях возникают точки встречи потоков воды от разных источников. Положение этих точек зависит от сопротивления ТС, распределения нагрузки вдоль магистрали, располагаемых напоров на коллекторах ТЭЦ. Суммарный расход воды в таких сетях, как правило, задан.

Рис.6.13. Схема ТС, питаемой от двух источников

Точка водораздела находится следующим образом. Задаются произвольными значениями расхода воды на участках магистрали исходя их 1-го закона Кирхгофа. Определяют невязки напора на основе 2-го закона Кирхгофа. Если при предварительно выбранном распределении расхода водораздел выбран в т.К, то второе уравнение Кирхгофа запишется в виде

, .

По 2-му закону Кирхгофа определяется невязка потерь давления Dp . Чтобы сделать невязку давления равной нулю, нужно ввести в расчет поправку расхода – увязочный расход. Для этого в уравнении полагают Dp =0 и вместо V вводят V+dV или V-dV . Получим

. Знак Dp равен знаку dV . Далее уточняется распределение расхода на участках сети. Для поиска точки водораздела проверяются два расположенных рядом потребителя.

Рис.6.14. Определение положения точки водораздела

а). Точка водораздела находится между потребителями m и m+1 . В этом случае . Здесь - перепад давления у потребителя m при питании от станции А. - перепад давления у потребителя m+1 при питании от станции В.

Пусть точка водораздела находится между потребителями 1 и 2. Тогда

; . Если эти два перепада давления равны, то точка водораздела находится между потребителями 1 и 2. Если нет, то проверяется следующая пара потребителей, и т.д. Если ни для одной пары потребителей не обнаружено равенство располагаемых напоров, это означает, что точка водораздела находится у одного из потребителей.

a. Кольцевая сеть.

Кольцевую сеть можно рассматривать как сеть с двумя источниками питания с равными напорами сетевых насосов. Положение точки водораздела в подающей и обратной магистралях совпадает, если сопротивления подающей и обратной линий одинаковы и нет подкачивающих насосов. В противном случае положения точки водораздела в подающей и обратной линиях нужно определять отдельно. Установка подкачивающего насоса приводит к смещению точки водораздела только в той линии, на которой он установлен.

Рис.6.15. График напоров в кольцевой сети

В этом случае НА = НВ .

b. Включение насосных подстанций в сети с двумя источниками питания

Для стабилизации режима давления при наличии подкачивающего насоса на одной из станций напор на входном коллекторе поддерживается постоянным. Эту станцию называют фиксированной, другие станции – свободными. При установке подкачивающего насоса напор во входном коллекторе свободной станции меняется на величину .

a. Гидравлический режим открытых систем теплоснабжения

Основная особенность гидравлического режима открытых систем теплоснабжения заключается в том, что при наличии водоразбора расход воды в обратной линии меньше, чем в подающей. Практически эта разность равна водоразбору.

Рис.6.18. Пьезометрический график открытой системы

Пьезометрический график подающей линии остается постоянным при любом водоразборе из обратной линии, так как расход в подающей линии поддерживается постоянным с помощью регуляторов расхода на абонентских вводах. С увеличением водоразбора уменьшается расход в обратной линии и пьезометрический график обратной линии становится более пологим. Когда водоразбор равен расходу в подающей линии, расход в обратной равен нулю и пьезометрический график обратной линии становится горизонтальным. При одинаковых диаметрах прямой и обратной линий и отсутствии водоразбора графики напора в прямой и обратной линиях симметричны. При отсутствии водоразбора на ГВС расход воды равен расчетному расходу на отопление – V .

Из уравнения (***) можно найти f .

1. При разборе воды на ГВС из подающей линии расход через систему отопления падает. При разборе из обратной линии – растет. При b =0.4 расход воды через систему отопления равен расчетному.

2. Степень изменения расхода воды через систему отопления –

3. Степень изменения расхода воды через систему отопления тем больше, чем меньше сопротивление системы.

Увеличение водоразбора на ГВС может привести к ситуации, когда вся вода после системы отопления будет поступать на водоразбор ГВС. При этом расход воды в обратном трубопроводе будет равен нулю.

Из (***): , откуда (****)