Тарифы Услуги Сим-карты

Глобальная сеть Internet. Как это работает

В нашем динамично развивающемся мире многие люди, даже не имеющие непосредственного отношения к вычислительной технике, имеют дома компьютер. Зачастую человек, впервые купивший ПК, вдоволь наигравшись, решает подсоединиться к Интренету, о котором хорошо наслышан. Среди нескольких интернет-провайдеров, предлагающих свои услуги, он должен выбрать одного. Приведенный ниже материал поможет принять решение. В нем рассмотрены способы подключения ПК к Сети и технологии, позволяющие выходить в нее через обычную электрическую розетку.

Есть несколько причин, способствующих распространению Всемирной паутины в России. И объясняются они не повышением доходов населения, а, во-первых, снижением цен на коммуникационное оборудование, да и вообще на технику в целом; во-вторых, увеличением числа интернет-провайдеров и укрупнением уже существующих; в-третьих, снижением цен на подключение к Сети, в результате его расширения, а также принятия нового закона «О связи».

Сейчас доступ в Интернет можно получить с помощью сети КТВ (кабельное телевидение), домовой локальной сети (ЛС), асимметричной цифровой абонентской линии - ADSL (Asymmetric Digital Subscriber Lines) и проч. Причем одни из технологий доступа к всемирной Сети не требуют прокладки дополнительных коммуникаций, а другие, наоборот, не могут без них обойтись.

Доступ через стационарный или мобильный телефон

Еще недавно основным видом доступа в Интернет был коммутируемый (здесь и далее речь идет о московском регионе, где существует многообразие технологий). Его преимущества очевидны. Стоимость модема, включающегося в обычную телефонную розетку, снизилась и в зависимости от модели колеблется от 20 до 100 долл. Подсоединение зависит только от того, включен ли абонент в телефонную сеть общего пользования (ТфОП). Повсеместный переход на цифровые АТС позволяет работать со скоростями до 56 кбит/с, а с учетом сжатия - с еще большими (протоколы V.92, V.44). Этого достаточно для просмотра HTML-страниц, игр, копирования файлов объемом до 10 Мбайт и чтения почты. Но эта же простота порождает множество проблем, обусловленных прежде всего недоступностью абонента для входящих звонков. Кроме того, в связи с особенностями построения ТфОП скорость у обычных коммутируемых модемов не может превысить 64 кбит/с, даже при наличии идеального канала, т.е. при отсутствии каких-либо мешающих факторов, помех в линии и т.п., что ограничивает возможность пользователя получать полноценный доступ к мультимедийной информации. (Мы не обсуждаем абонентские устройства ISDN, поскольку в России слабо развита сеть, работающая по этой технологии, да и домашние пользователи Интернета вряд ли позволят ее себе, невзирая на многие ее преимущества.) К тому же абонент получает доступ в Сеть только во время сеанса связи, что также не всегда удобно.

При рассмотрении коммутируемого доступа в Интернет следует сказать и о сотовых сетях связи, ставших очень популярными благодаря дешевизне и широким возможностям. В 2004 г. по количеству абонентов они превзошли традиционную ТфОП. Их зоны покрытия охватывают значительную территорию России, не говоря уже о Москве и Московской области. В отличие от традиционной телефонии сотовая связь с введением новых стандартов стала активно развиваться и наращивать скорость доступа. Так, уже предоставляется выход в Интернет со скоростью до 171,2 кбит/с (GPRS, General Packet Radio Service). Суть данной технологии заключается в автоматическом выделении не используемых в определенный момент времени каналов, что позволяет оптимизировать загрузку сети. Но скорость передачи по этой технологии не сможет оставаться всегда высокой и будет довольно сильно зависеть от загруженности сети, поскольку телефонные переговоры имеют приоритет над передачей данных. Следующее поколение сотовых сетей - 3G позволит передавать информацию со скоростью до 2 Мбит/с для абонентов, находящихся в помещении, т.е. это уже видео в реальном времени. Для ряда стран, в частности для Японии, 3G уже вчерашний день, так как на очереди стоят стандарты 4G, разрабатываемые с 1998 г. Максимальная скорость, обеспечиваемая с помощью 4G, составит 1 Гбит/с, коммерческий запуск этой сети планируется в 2010 г.

Выход в Интернет через домовую сеть

Проблемы, связанные с коммутируемым доступом, знакомы большинству пользователей, поэтому в Москве стали появляться их сообщества, пытающиеся наладить надежную и высокоскоростную связь с Интернетом своими силами. Результатом их деятельности стало создание локальных домовых сетей на основе Ethernet. Такие сети подключались к интернет-провайдеру по выделенным высокоскоростным каналам, например, с помощью xDSL-модемов. Подобное решение оказалось вполне оправданным, поскольку, во-первых, стоимость выделенного канала зачастую не по карману отдельному пользователю, во-вторых, абоненты одной сети могли обмениваться данными с высокими скоростями, не выходя вовне (игры, обмен файлами, чат), что снижало затраты, и в-третьих, «на всю катушку» использовался внешний канал доступа в Интернет. Локальные сети обычно строятся на базе Ethernet, HPNA, Wi-Fi. Эти технологии имеют низкую надежность, а также не могут работать на расстоянии более нескольких сотен метров (здесь не рассматриваются локальные волоконно-оптические сети). Если для Ethernet приходится прокладывать отдельный кабель, что порой сопряжено с трудностями организации и дальнейшей эксплуатации, то для Wi-Fi желательна прямая видимость. К тому же этот вид сети напрямую зависит от атмосферных явлений. Но указанные недостатки окупаются высокими скоростями внутри сети и незначительностью материальных затрат.

Обычно домовая сеть строится с помощью Ethernet (протокол IEEE 802.3). Для этого используется витая пара, протягиваемая в каждую подключаемую квартиру. В результате пользователь получает доступ в локальную сеть, как правило, без оплаты внутреннего трафика, а при желании и выход в Интернет, но тогда за входящий трафик придется платить. При организации сети такого вида телефон не занят. Кроме того, скорость обмена внутри локальной сети довольно высока, а скорость выхода вовне зависит от числа пользователей, одновременно работающих с Сетью, и конечно же от пропускной способности интернет-канала. В данном случае крупным недостатком следует считать то, что приходится прокладывать дополнительный кабель. Однако существует способ под названием HPNA, позволяющий обойтись без этого.

Разработаны две версии этой технологии - HPNA 1.0 (топология «звезда») и HPNA 2.0 (топология «общая шина»). Первая обеспечивает передачу данных со скоростью до 1 Мбит/с, а вторая - до 10 Мбит/с. Оборудование стандарта HPNA 1.0 подключается параллельно телефонному аппарату. Данную технологию создавали для работы по обыкновенной «лапше». Она не влияет на разговоры между абонентами ТфОП, а также на работу xDSL-устройств, поскольку ее полоса пропускания лежит в пределах 5,5-9,5 МГц (для HPNA 1.0). Тогда, как и в случае подключения к Интернету по xDSL-технологии, при передаче данных через домовую сеть аппарат остается свободным. Для HPNA 2.0 полоса пропускания находится в интервале от 2 до 30 МГц. Способ подключения по второму стандарту несколько отличается от первого варианта. В подъезде по стояку снизу доверху протягивается кабель, к которому и подсоединяются желающие объединиться в домовую сеть. В этом случае скорость 10 Мбит/с распределяется на всех подключенных к «общей шине». Сегмент подъезда может быть подсоединен к конвертеру HPNA/Ethernet, который, в свою очередь, коммутируется в сеть передачи данных. Работающие по описанным технологиям устройства способны эксплуатироваться на расстоянии 150 и 350 м соответственно. Впрочем, допустима и линия длиной до 1 км, но тогда скорость будет в несколько раз ниже. Это объясняется адаптацией приемника к различным уровням помех, а также изменением уровня сигнала в зависимости от характеристик линии. В процессе работы между приемником и передатчиком постоянно происходит согласование, что позволяет снизить требования к среде передачи. В HPNA 2.0 используется также подстройка оптимальной скорости передачи данных в зависимости от изменяющихся характеристик кабеля. Одновременно к одной абонентской линии можно подключать до 32 компьютеров.

Еще одна технология, не требующая дополнительной проводки кабеля при организации домовой сети, называется Wi-Fi. Она строится на ряде протоколов семейства IEEE 802.11, работает на частоте 2,4 ГГц и позволяет передавать данные со скоростью до 11 Мбит/с. Архитектура сети следующая. У оператора организуется точка доступа, где монтируется оборудование, отвечающее за передачу радиосигнала, а у абонента ставится антенна, подключаемая через стандартные интерфейсы к компьютеру. Стоимость ее не превышает 150 долл. Расстояние, на котором будет работать подобное оборудование, колеблется от 100 до 1000 м. К сожалению, Wi-Fi имеет один существенный недостаток - как уже говорилось, желательна прямая видимость, так как существенное влияние на радиосигнал оказывают не только стоящие рядом здания, но и кроны деревьев, которые его рассеивают. Бороться с этим можно лишь усилением мощности передаваемого сигнала (но здесь также есть ограничения), так что лучше всего обеспечить прямую видимость.

Доступ в Сеть через спутниковый канал

Входящий интернет-трафик обычно значительно превышает исходящий от пользователя. С учетом такой асимметрии и строились последние модемные протоколы V.90 и V.92. Человек, работая с Сетью, отправляет туда короткие управляющие пакеты, а в ответ на них получает значительные объемы информации, в частности видео- и аудиофайлы, телевизионное вещание. Поэтому появилось решение, связанное с применением гибридного соединения с Интернетом, где модем через ТфОП передает исходящий трафик, а принимаемый идет через спутниковый канал. Благодаря этому скорость входящих данных многократно возрастает и порой достигает 0,5-2,5 Мбит/с. Принцип работы таков: пользователь через модем выходит на пул провайдера подобных услуг и работает с Сетью через определенный прокси-сервер, принимающий запросы пользователя, а ответы ему направляются через спутник. Затраты по подключению не такие большие, как может показаться. Для получения подобной услуги необходимы модем, антенна, конвертер, DVB-карта. Подобный вариант целесообра-зен для тех, кто находится на большом расстоянии от операторов, предоставляющих доступ к Интернету. Однако при данном способе телефонная линия будет занята. Ниже мы рассмотрим пути решения этой проблемы.

Доступ во Всемирную паутину через сеть КТВ

Существует еще один способ подключения к Интернету - через сеть КТВ. Организовать его можно двумя путями. Первый наиболее прост в реализации и напоминает доступ через спутник. Пользователь звонит по коммутируемой линии сети на модемный пул провайдера, предоставляющего подобную услугу. В дальнейшем запросы посылаются по коммутируемой линии сети, а ответы на них приходят по сети КТВ со скоростью до 56 Мбит/с на кабельный модем пользователя. При втором способе производится двусторонняя работа по телевизионной сети с применением кабельного модема. В этом случае исходящая скорость возрастает многократно, а телефон остается свободным.

Выход в Сеть по выделенному каналу

Наконец, рассмотрим еще один распространенный в Москве способ подключения к Сети, при котором не требуется прокладки дополнительных коммуникаций, а также остается свободным домашний телефон. Он заключается в организации выделенного высокоскоростного соединения между домашним ПК и выбранным интернет-провайдером по уже существующей телефонной проводке с использованием технологии ADSL или VDSL (оборудование ADSL дешевле, и потому соответствующая технология более популярна).

Телефонные разговоры отделяются от передачи данных с помощью сплиттера - частотного фильтра, к которому подсоединяются телефонный аппарат и ADSL-модем. Провайдер также устанавливает подобное оборудование, разделяющее по частотам телефонный разговор и передачу данных со стороны АТС. К компьютеру ADSL-модем подключается через порт USB или сетевую плату (порт Ethernet). Он обеспечивает передачу данных к абоненту со скоростью до 24 Мбит/с, а от него - со скоростью до 2 Мбит/с. (Подобные скорости обеспечиваются стандартами G.992.3, G.992.4, G.992.5, а в жизни используется G.992.1 со скоростью входящего потока до 8 Мбит/с и исходящего - до 1 Мбит/с.) Трафик асимметричен (ADSL), так как в большинстве случаев от пользователя идут управляющие команды, а в ответ он получает интернет-страницы с графикой, аудио- и видеоинформацию. Такое подключение обеспечивает работу на расстоянии более 1 км на максимальной скорости, что обычно удовлетворяет большинство абонентов. В последнее время наметилась тенденция к снижению стоимости данной услуги, и потому она становится более привлекательной для частных лиц. Этому способствует и продвижение ADSL в России.

Доступ в Интернет через электрическую розетку

9 декабря 2004 г. появилась информация о том, что компания «Электроком» планирует задействовать такую коммуникацию, как электросеть, для обеспечения широкополосного доступа в Интернет с использованием технологии PLC (Power Line Communications). Инвестиции для столь грандиозного замысла, предоставленные фондом «Русские Технологии» и компанией Intel Capital, подразделением корпорации Intel, составили 4 млн. долл. Организация домовых сетей на базе такой технологии намечена не только в Москве, но и в других регионах России.

Огромная территория нашей страны опутана электрическими проводами, и для оперативного управления такой сетью необходима связь. Попытки организовать передачу данных по высоковольтным проводам предпринимались и ранее, но ее скорость была мала.

В течение 1997-2000 гг. в этом направлении был совершен основной технологический прорыв, чему способствовали накопленный опыт, а также появление высокоскоростных и дешевых DSP (Digital Signal Processor - цифровой сигнальный процессор). В апреле 2000 г. был создан альянс HomePlug Powerline Alliance, в состав которого вошло немало компаний, в том числе в качестве спонсоров. Это 3Com, AMD, Cisco Systems, Compaq, Conexant, Diamond Multimedia, Enikia, Intel, Intellon, Motorola, Panasonic, Tandy/RadioShack и Texas Instruments. Таким образом был дан мощный толчок дальнейшему развитию и стандартизации передачи данных и голоса по электропроводам. А поскольку началось массовое подключение к Интернету, альянс принял решение о развитии именно этого сегмента рынка. И уже в июне 2001 г. появился первый стандарт HomePlug 1.0, позволяющий использовать электросеть в качестве локальной и подключать к ней различные устройства. Работа в этой сети могла идти со скоростью до 14 Мбит/с, а через специальные шлюзы была реализована возможность выхода в Интернет и ТфОП.

Электрический кабель представляет собой среду, изначально не предназначенную для высокоскоростной передачи данных (когда речь идет о скоростях в десятки мегабит в секунду, то и полоса частот должна быть соответствующей). Процесс затухания сигнала в кабеле показан на рис. 2.

Кроме того, на приведенные значения влияют такие факторы, как материал кабеля (медный или алюминиевый), качество соединения, наличие перехода с одного кабеля на другой. Но даже если все сделано идеально, нужно учитывать различные помехи, создаваемые бытовыми приборами, электроинструментами и промышленным оборудованием. А поскольку электрический кабель не экранирован, то свою лепту в увеличение помех вносят и различные радиостанции.

Непросто было выбрать стандарт для высокоскоростной передачи данных, но все же из множества разнообразных технологий для HomePlug 1.0 было использовано решение Power Packet фирмы Intellon, которое базируется на модифицированном методе модуляции OFDM (Orthogonal Frequency Division Multiplexing - ортогональное частотное разделение каналов с одновременной передачей сигналов на разных несущих). Передача данных с помощью OFDM по сути очень похожа на протокол PEP, применявшийся в модемах, подключаемых к ТфОП. Весь спектр частот (от 4,3 до 20,9 МГц) делится на 84 диапазона, и в каждом из них принимается своя несущая частота, что позволяет осуществлять демодуляцию даже тогда, когда в канале появляется узкочастотная помеха или происходит сильное затухание. При этом пораженный участок временно блокируется, но передача все равно не прекращается. Данная технология передачи помогает подстраиваться под те условия, которые устанавливают службы радионадзора за использованием радиочастот, поскольку неэкранированный электрический кабель может создавать помехи и для радиостанций, и для специального оборудования.

Для борьбы с межсимвольной интерференцией, возникающей при изменении среды передачи (например, при включении какого-нибудь устройства, скажем лампочки, изменяется структура среды не только у вас в квартире, но и у соседей, поскольку они подключены к вашей фазе), было решено увеличить длину посылки вызова и ввести дополнительную микросекундную преамбулу, а кроме того, постоянно отслеживать состояние среды непосредственно перед передачей информации.

В качестве метода был принят множественный доступ в канал с контролем несущей/предотвращением коллизий CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance), так как при подключении к сети компьютеров по технологии «общая шина» необходимо было решать вопрос разделения среды передачи.

Что же дает данная технология? В некоторых городах Западной Европы она практически вытеснила все остальные способы построения локальных сетей и выхода в Интернет. И это было оправданно, так как, в отличие от перечисленных выше решений, не требуется прокладывать дополнительные коммуникации, ведь не бывает домов, где есть ПК, но нет электропроводки. Пользователь подобной услуги наряду с доступом в Интернет получает возможность работы в домовой сети, а также подключения к ТфОП через электропроводку. Ему придется лишь приобрести небольшое устройство, которое свяжет домашний компьютер и телефон с Интернетом и ТфОП. Данные по сети идут по протоколу TCP/IP, для передачи голоса используется технология VoIP, скорость его кодирования составляет обычно 32 кбит/с. А вообще скорость передачи по такой сети на расстояние до 200 м достигает 14 Мбит/с. На организацию сети накладывается еще одно ограничение - подобные устройства должны подключаться лишь к одинаковым фазам, поскольку трансформаторы на подстанциях не пропускают высокочастотных сигналов. Значит, необходимо ставить дополнительные устройства перехода между фазами, но этим должен заниматься оператор, предоставляющий такой сервис. Причем эти устройства потребуются не только для соседних домов, но и для тех подъездов, в которых на квартиры заведены разные фазы (рис. 3 ).

Чтобы эта технология была работоспособна, величина напряжения в сети должна находиться в диапазоне 90-270 В. Стоимость абонентского устройства - около 100 долл. Рассмотренное решение перспективно, но пока не очень распространено в России. Сфера применения данной технологии достаточно широка, она охватывает прежде всего тех пользователей, для которых критичной является скорость подключения и у которых отсутствует сетевая инфраструктура.

Общеизвестно, однако, что прогресс не стоит на месте. И спустя три года вслед за HomePlug 1.0 был утвержден новый стандарт - HomePlug AV (его разработка была завершена в октябре 2004 г., а принят он был 18 августа 2005 г.), позволяющий передавать по той же электропроводке смешанный вид данных: голос, видео, видео с высокой четкостью (HDTV - несколько потоков), данные со скоростью до 200 Мбит/с. Это обеспечивает QoS - Quality of Service (гарантированное качество обслуживания). Чтобы суметь передать данные с такой скоростью по электросети, был изменен частотный диапазон. Он расширился и находится в пределах от 2 до 28 МГц. Для повышения безопасности передаваемых данных стандарт DES был изменен на AES, а также была увеличена длина ключа с 56 до 128 бит. Но тем не менее новый стандарт HomePlug AV обеспечивает совместимость с абонентскими устройствами стандарта HomePlug 1.0. Он использует модуляцию OFDM с расширенным FEC (Forward Error Control), которая позволяет оценивать канал и адаптироваться к нему. Как и в предыдущей спецификации, был выбран множественный доступ с контролем несущей CSMA. Новый стандарт также поддерживает TDMA и FDMA для совместимости с Broadband Over Powerline (BPL). Продажа оборудования, поддерживающего HomePlug AV, уже началась, и будем надеяться, что подобная технология найдет в России своих пользователей.

С Cергеем Владимировичем Мухиным можно связаться по e-mail: [email protected] .

Капля дегтя в бочке меда

Не надо строить иллюзий - с доступностью технологии не все так просто, и в этом я имел возможность убедиться на практике. Прежде всего возникает проблема с дальностью, на которой работает PLC, - она не превышает 300 м. Значит, мы сможем создавать сети лишь для небольших офисов или между квартирами в одном подъезде. Чтобы увеличить дальность связи, придется устанавливать дополнительные регенераторы, из-за чего увеличится стоимость вложений. Кроме того, работающее по данной технологии оборудование еще не сертифицировано. К тому же предлагается целый спектр конкурирующих способов доступа в Интернет, так что технологии выхода в Сеть через электрическую розетку еще предстоит бороться за свое место под солнцем.

Наиболее распространенные схемы подключения мобильных пользователей локальных и небольших корпоративных сетей к глобальной сети интернет с использованием технологии Ethernet представлены на рисунке 1.6 -- 1.8.

На рисунке 1.6 показано подключение мобильных пользователей (ноутбуки и КПК) к локальной сети Ethernet при помощи точек доступа. Сеть Ethernet может иметь файловый сервер и сервер печати. Интернет-сервер с функциями прокси-сервера и брандмауэра соединен с маршрутизатором. При помощи маршрутизатора осуществляется соединение с провайдером сети интернет.

На рисунке 1.7 показано интернет-соединение пользователей локальной или корпоративной сети при использовании компьютера, который подключен к сети интернет. Подключение может осуществляться при помощи модема, выделенной линии, адаптера или маршрутизатора. Этот компьютер должен находиться во включенном состоянии во время возможной работы любого

Рисунок 1.6 - Выход в интернет при помощи интернет-сервера пользователя сети.

Если на компьютере установлена операционная система Windows ХР, то должно быть запущено приложение NAT (Network Address Translation -- трансляция сетевых адресов). При этом используется методика ICS (Internet Connection Sharing -- общий доступ к интернет-соединениям), позволяющая при помощи одного компьютера выходить в сеть интернет нескольким компьютерам.

Рисунок 1.7 - Выход в интернет при помощи модема, адаптера или маршрутизатора

На рисунке 1.8 показано подключение к провайдеру сети интернет при помощи маршрутизатора. В этом случае отпадает необходимость в использовании постоянно включенного компьютера.

Рисунок 1.8 - Выход в интернет при помощи маршрутизатора

На рисунке 1.9 показано подключение отдельного компьютера к провайдеру сети интернет при помощи модема, кабельной линии, адаптера или маршрутизатора.

Рисунок 1.9 Выход в интернет при помощи модема, адаптера или маршрутизатора

Характеристика основных типов локальных сетей


Таблица 1.1 - Характеристики основных типов локальных сетей

Стандарт

Скорость передачи данных

Среда передачи/Рабочая частота

Максимальное расстояние, м

Стоимость

Совместимость оборудования

PCI, USB и др.

До 100 Мбит/с

Витая пара

Несовместимо с оборудованием беспроводных сетей

PCcard/ PCMCIA USB, PCI

До 11 Мбит/с

Совместимость оборудования стандартов IEEE 802.11b и 802.llg

До 22 Мбит/с

До 54 Мбит/с

Низкая, но выше, чем в проводной сети

До 54 Мбит/с (108

На 30- 50% дороже, чем 802.1 b/d

Несовместимо с оборудованием стандартов

До 723 Кбит/с

Несовместимо

Характеристики основных типов локальных сетей приведены в табл. 1.1.

В табл. 1.1 для сравнения с беспроводными сетями приведены характеристики проводной сети стандарта Fast Ethernet 100 Мбит/с. Для этой сети характерным является возможность работы в полудуплексном режиме (передача данных ведется в обоих направлениях, но попеременно во времени), необходимость использования концентраторов или коммутаторов для совместной работы более двух компьютеров, максимальное удаление взаимодействующих компьютеров 100 м. Сеть также характеризуется невысокой стоимостью применяемого оборудования.

Беспроводные сети характеризуются малым сроком установки, быстротой развертывания и свертывания сети, отсутствием медных проводов для прокладки сети, отсутствием необходимости в монтажных работах по прокладке кабеля (нарушение стен, сверление отверстий и др.).

Сети стандарта IEEE 802.1 lb являются в настоящее время наиболее распространенными среди беспроводных локальных сетей. Стоимость их оборудования приближается к стоимости проводных сетей. Недостатком является невысокая скорость передачи данных, которая не превышает 11 Мбит/с. Однако расширение этого стандарта 802.11Ь+ уже позволяет передавать данные со скоростью 22 МБит/с. Стандарт поддерживает архитектуру как одноранговых сетей, так и сетей с фиксированной структурой, у которых весь трафик проходит через точку доступа (режим Infrastructure Mode).

Оборудование сетей нового стандарта 802.11g совместимо с оборудованием сетей стандартов 802.11b/b+. Любое устройство, поддерживающее стандарт 802.11g, будет работать и в сетях стандартов 802.11b/b+, а устройства стандартов 802.11b/b+ будут работать в сетях стандарта 802.11g. Стандарт предусматривает максимальную скорость передачи данных 54 Мбит/с, а расширения этого стандарта 802.11g+, 108 МБит/с, Turbo Mode, Super G, Nitro ХМ могут обеспечить максимальные скорости от 108 до 140 МБит/с.

Сети стандарта 802.11а по скорости обмена данными сопоставимы с проводными сетями. Их максимальная скорость составляет 54 Мбит/с. Использование нового оборудования, как сетевая карта Proxim Harmony 802.11a CardBus Card, позволяет повысить скорость обмена данными в два раза и сравняться со скоростями обмена данными в проводных сетях. Ниже приведено время в минутах на передачу файла объемом 700 Мбайт по сетям различных стандартов.

Время на передачу файла по различным сетям, кроме Bluetooth, оказалось вполне приемлемым. Сети Bluetooth из-за малого быстродействия нецелесообразно применять в качестве транспортной среды для передачи данных. Их целесообразно использовать для синхронизации контактов между различными PDA и ПК, КПК, ноутбуками.

Internet - всемирная информационная компьютерная сеть, представляющая собой объединение множества региональных компьютерных сетей и компьютеров, обменивающихся друг с другом информацией по каналам общественных телекоммуникаций (выделенным телефонным аналоговым и цифровым линиям, оптическим каналам связи и радиоканалам, в том числе спутниковым линиям связи).

Информация в Internet хранится на серверах. Серверы имеют свои адреса и управляются специализированными программами. Они позволяют пересылать почту и файлы, производить поиск в базах данных и выполнять другие задачи.

Обмен информацией между серверами сети выполняется по высокоскоростным каналам связи (выделенным телефонным линиям, оптоволоконным и спутниковым каналам связи). Доступ отдельных пользователей к информационным ресурсам Internet обычно осуществляется через провайдера или корпоративную сеть.

Провайдер - поставщик сетевых услуг – лицо или организация предоставляющие услуги по подключению к компьютерным сетям. В качестве провайдера выступает некоторая организация, имеющая модемный пул для соединения с клиентами и выхода во всемирную сеть.

Основными ячейками глобальной сети являются локальные вычислительные сети. Если некоторая локальная сеть непосредственно подключена к глобальной, то и каждая рабочая станция этой сети может быть подключена к ней.

Существуют также компьютеры, которые непосредственно подключены к глобальной сети. Они называются хост - компьютерами (host - хозяин). Хост – это любой компьютер, являющийся постоянной частью Internet, т.е. соединенный по Internet – протоколу с другим хостом, который в свою очередь, соединен с другим, и так далее.

Для подсоединения линий связи к компьютерам используются специальные электронные устройства, которые называются сетевыми платами, сетевыми адаптерами, модемами и т.д.

Практически все услуги Internet построены на принципе клиент-сервер. Вся информация в Интернет хранится на серверах. Обмен информацией между серверами осуществляется по высокоскоростным каналам связи или магистралям. Серверы, объединенные высокоскоростными магистралями, составляют базовую часть сети Интернет.

Отдельные пользователи подключаются к сети через компьютеры местных поставщиков услуг Интернета, Internet - провайдеров (Internet Service Provider - ISP), которые имеют постоянное подключение к Интернет. Региональный провайдер, подключается к более крупному провайдеру национального масштаба, имеющего узлы в различных городах страны. Сети национальных провайдеров объединяются в сети транснациональных провайдеров или провайдеров первого уровня. Объединенные сети провайдеров первого уровня составляют глобальную сеть Internet.

Передача информации в Интернет обеспечивается благодаря тому, что каждый компьютер в сети имеет уникальный адрес (IP-адрес), а сетевые протоколы обеспечивают взаимодействие разнотипных компьютеров, работающих под управлением различных операционных систем.

Под сетевым протоколом называют набор правил, позволяющих осуществлять соединение и обмен данными между двумя и более включенными в сеть компьютерами. Фактически разные протоколы описывают лишь разные стороны одного типа связи, взятые вместе они образуют стек протоколов.

Сетевой протокол TCP / IP является не одним протоколом, а целым набором протоколов работающих совместно. Он состоит из двух уровней. Протокол верхнего уровня TCP отвечает за правильность преобразования данных в пакеты информации, из которых на приёмной стороне собирается послание. Протокол нижнего уровня IP, отвечает за правильность доставки сообщений по указанному адресу.

Сетевой протокол HTTP (Hypertext Transfer Protocol) – является протоколом более высокого уровня по отношению к протоколу TCP/IP – протоколом уровня приложения. Протокол HTTP был разработан для передачи по Интернету web-страниц.

Мы отдаём команды протоколу HTTP, используя интерфейс браузера, который является HTTP-клиентом. При щелчке мышью по ссылке браузер запрашивает у web-сервера данные того ресурса, на который указывает ссылка.

Протокол FTP (File Transfer Protocol) – протокол разработан для передачи файлов по Интернет.

Протокол Telnet предназначен для подключения к удалённому компьютеру как пользователь и производить действия над его файлами и приложениями, точно так же, как если бы работали на своём компьютере.

Telnet является протоколом эмуляции терминала. Работа с ним ведётся из командной строки.

WAP был разработан в 1997 году для того чтобы предоставлять доступ к службам Интернета пользователям беспроводных устройств – таких как мобильные телефоны, пейджеры, электронные органайзеры и др.

Эталонная Модель OSI – это описательная схема сети, её стандарты гарантируют высокую совместимость и способность к взаимодействию различных типов сетевых технологий. Кроме того она иллюстрирует процесс перемещения информации по сетям. Модель OSI описывает, каким образом информация проделывает путь через сетевую среду от одной прикладной программы к другой прикладной программе. По мере того, как подлежащая отсылке информация проходит вниз через уровни системы, она становится всё меньше похожей на человеческий язык и всё больше похожей на ту информацию, которую понимают компьютеры, а именно «нули» и «единицы». Модель OSI делит задачу перемещения информации на 7 уровней. Такое разделение на уровни называется иерархическим представлением.

Каждый уровень модели OSI имеет специальные функции, соответствующие программному обеспечению или устройствам.

1) Физический уровень – это самый нижний уровень системы, который обеспечивает преобразование информации в уровень сигналов, принятый в среде передачи и обратное декодирование.

2) Канальный уровень – отвечает за формирование пакетов стандартного вида. Здесь производится управление доступом к сети, обнаруживаются ошибки передачи и производится повторная пересылка приёмнику ошибочных пакетов.

3) Сетевой уровень Отвечает за адресацию пакетов и перевод имён в сетевые адреса (и обратно), а также за выбор маршрута, по которому пакет доставляется по назначению.

4) Транспортный уровень – устанавливает, управляет и разрывает связь между хостами. Этот уровень также синхронизирует диалог между представительскими уровнями двух хостов и управляет их обменном данных.

5) Сеансовый уровень – отвечает за поддержание сеанса связи, что позволяет приложениям взаимодействовать между собой длительное время.

6) Представительский уровень (уровень представления) – определяет пригодны ли данные, посланные прикладным уровнем одной системы для чтения прикладным уровнем другой системы, если нет определяет и преобразует формат данных в необходимый.

7) Прикладной уровень наиболее близок к пользователю. Этот уровень предоставляет сетевые сервисы (приложения), такие как передача файлов, электронная почта и т.д. Он также управляет все шестью уровнями.

Система доменных имён. Современные пользователи Интернета привыкли к символьным адресам сайтов, например: nic.ru или test.ru. Действительно, такие адреса и набирать проще, и запоминаются они лучше. Технология доменных имён (DNS), благодаря которой функционируют эти символьные адреса, настолько срослась с Интернетом, что абсолютное большинство пользователей вообще не задумываются о ее существовании. А некоторое количество «продвинутых пользователей» вспоминают про DNS только тогда, когда с ней возникают те или иные проблемы.

Между тем, для адресации узлов Интернета используются специальные числовые «коды» – IP-адреса. Система доменных имён как раз служит для выполнения преобразований между символьными и числовыми адресами. Традиционный IP-адрес может быть записан с помощью четырех чисел в десятичной системе счисления, например: 192.168.175.13 или 194.85.92.93. DNS позволяет сопоставить числовой IP-адрес и символьный, например: 194.85.92.93 = test.ru.

При этом символьный адрес в DNS представляет собой текстовую строку, составленную по особым правилам. Самое важное из этих правил – иерархия доменов. Система адресов DNS имеет древовидную структуру. Узлы этой структуры называются доменами. Каждый домен может содержать множество «подчиненных» доменов.

Дерево DNS принято делить по уровням: первый, второй, третий и так далее. При этом начинается система с единственного корневого домена (нулевой уровень). Интересно, что про существование корневого домена сейчас помнят только специалисты, благодаря тому, что современная DNS позволяет не указывать этот домен в адресной строке. Впрочем, его можно и указать. Адресная строка с указанием корневого домена выглядит, например, так: «site.test.ru.» – здесь корневой домен отделен последней, крайней справа, точкой.

Как несложно догадаться, адреса с использованием DNS записываются в виде последовательности, отражающей иерархию имен. Чем «выше» уровень домена, тем правее он записывается в строке адреса. Разделяются домены точками. Разберем, например, строку www.site.nic.ru. Здесь домен www – это домен четвертого уровня, а другие упомянутые в этой строке домены расположены в домене первого уровня RU. Например, site.nic.ru – это домен третьего уровня. Очень важно понимать, что привычный адрес веб-сайта, скажем, www.test.ru, обозначает домен третьего уровня (www), расположенный внутри домена второго уровня test.ru.

Для преобразования имен доменов и IP-адресов в DNS используется распределенная система из специальных серверов. Каждый из серверов обслуживает свой «набор клиентов», выполняя для них преобразования адресов. Среди серверов DNS существует иерархия «доверия» и распределение «зон ответственности»: тот или иной сервер может отвечать за определенный набор доменов. При этом DNS-серверы, входящие в глобальную систему DNS Интернета, связаны между собой и обмениваются информацией по достаточно сложным протоколам. Например, между серверами передаются данные об изменении адресации в той или иной доменной зоне. Все это направлено на обеспечение успешного преобразования всех адресов, входящих в DNS, по запросу от любого компьютера, подключенного к Интернету, где бы этот компьютер ни находился.

Маршрутизация. Передаваемая по сети информация «упаковывается в конверт», на котором «пишутся» Интернет-адреса компьютеров получателя и отправителя, например «Кому: 198.78.213.185», «От кого: 193.124.5.33». Содержимое конверта на компьютерном языке называется Интернет-пакетом и представляет собой набор байтов.

Интернет-пакеты на пути к компьютеру-получателю также проходят через многочисленные промежуточные серверы Интернета, на которых производится операция маршрутизации. В результате маршрутизации Интернет-пакеты направляются от одного сервера Интернета к другому, постепенно приближаясь к компьютеру-получателю.

В Интернете часто случается аналогичная ситуация, когда компьютеры обмениваются большими по объему файлами. Если послать такой файл целиком, то он может надолго «закупорить» канал связи, сделать его недоступным для пересылки других сообщений. Для того чтобы этого не происходило, на компьютере-отправителе необходимо разбить большой файл на мелкие части, пронумеровать их и транспортировать в форме отдельных Интернет-пакетов до компьютера-получателя. На компьютере-получателе необходимо собрать исходный файл из отдельных частей в правильной последовательности, поэтому файл не может быть собран до тех пор, пока не придут все Интернет-пакеты.

Маршрутизация Интернет-пакетов обеспечивает доставку информации от компьютера-отправителя к компьютеру-получателю. Маршруты доставки Интернет-пакетов могут быть совершенно разными, и поэтому Интернет-пакеты, отправленные первыми, могут достичь компьютера-получателя в последнюю очередь.

Транспортировка данных производится путем разбиения файлов на Интернет-пакеты на компьютере-отправителе, индивидуальной маршрутизации каждого пакета и сборки файлов из пакетов в первоначальном порядке на компьютере-получателе.

Время транспортировки отдельных Интернет-пакетов между локальным компьютером и сервером Интернета можно определить с помощью специальных программ.

Праздник каждый день - это выражение вряд ли относится к ИТ-сообществу. Однако, у людей, связавших себя с высокими технологиями, тоже есть дни в году, в которые они могут с гордостью сказать - "Я программист, сисадмин, тестировщик и т.д.".

Кстати, праздников, как выяснилось, так или иначе относящихся к ИТ, не так уж и мало. Среди них есть летние, весенние, зимние, и, конечно же - осенние. К последним относится и День программиста, который не так давно был признан в России официальным. Итак, по порядку.

Международный день без интернета.
Данный праздник придумали в 2002 году организаторы британского некоммерческого онлайнового проекта DoBe.org, которые объявили последнее воскресенье января Международным днем без интернета. В этом году он отмечался 25 января. По их замыслу этот день люди должны провести в оффлайн, то есть без выхода во всемирную сеть и без компьютера. Пользователи сети, вместо онлайн-общения, должны выйти на прогулку, выехать за город, навестить родственников и друзей. Для того чтобы выбрать способ проведения времени без интернета, DoBe.org предлагает на листе бумаги написать шесть вариантов проведения досуга, а затем бросить игральную кость, чтобы определить, какой из них осуществить в первую очередь.

День безопасного интернета.
Этот праздник был учрежден по инициативе Европейской комиссии в 2004 году. Он отмечается в первый вторник февраля. В 2009 году празднование пришлось на 2-е число месяца. Целью дня безопасности в интернете является информирование пользователей сети о рисках и опасностях, связанных со всемирной паутиной. Праздник отмечается по всему миру.

День компьютерщика.
Праздник отмечается 14 февраля. Это день всех влюбленных в компьютеры людей. А если серьезно, то 14 февраля 1946 года был запущен первый электронный цифровой компьютер ENIAC, который реально работал и даже совершал вычисления (обсчет баллистических таблиц армии США). В честь этого события и задумали праздник, отмечать который теперь могут миллионы пользователей компьютеров во всем мире.

День оверклокера.

Это праздник для компьютерных энтузиастов, которые "разгоняют" процессоры своих ЭВМ до неведомых скоростей. По легенде впервые упоминание об этом празднике было зафиксировано в форуме российского оверклокерского портала в 2004 году. Некто под ником "зЁма с чернозЁма" предложил: "...давайте назначим себе дату - День оверклокеров (а то день танкиста есть, у лесной промышленности тоже... абыдно жить без праздника)". C тех пор "День оверклокера" отмечается в обычный год 28 февраля, а в високосный - "разогнанный год" - 29 февраля. Причем этот праздник, зародившийся в России, отмечается теперь по всему миру.

День ИТ-специалистов.

Является неофициальным праздником. Отмечается 28 февраля в день изобретения сетевого кабеля. В основном - это еще один повод выпить с коллегами.

День свободы слова в интернете.
Этот праздник создан по инициативе международной организации "Репортеры без границ" и проходит под патронатом ЮНЕСКО. День свободы слова в интернете - мероприятие сравнительно молодое - впервые он отмечался 12 марта 2008 года. Его целью является поддержка интернет-диссидентов, которые отбывают тюремное заключение по всему миру. В прошлом году в застенках находилось 63 человека, чья свобода слова не понравилась властям.

Организаторы мероприятия призывают в этот день выразить в виртуальном пространстве протест против цензуры, которой злоупотребляют правительства некоторых стран. К таким относятся Бирма, Китай, Северная Корея, Куба, Египет, Эритрея, Тунис, Туркменистан, Вьетнам и другие.

День выключения (Shutdown Day).
Впервые этот праздник отмечался 24 марта 2007 года. Тогда в Сети появился призыв отключить в один день как можно больше компьютеров по всему миру. Цель акции заключается в том, чтобы узнать, сколько же людей может продержаться в течение суток без компьютера, и что может произойти в результате такого флешмоба. Авторами идеи стали программисты, проживающие в Монреале (Канада), Denis Bystrov (родился в Белоруссии) и Ashutosh Rajekar (родился в Индии).

День рождения Рунета.

Отмечается 7 апреля. Именно в этот день в 1994 году международная организация ICANN (The Internet Corporation for Assigned Names and Numbers), которая занимается вопросами регламентирования отношений в мировом доменном пространстве, зарегистрировала для России домен.Ru. Кроме того, 7 апреля было подписано Соглашение «О порядке администрирования зоны RU». В 2009 году Рунету исполнилось 15 лет.

День Криптографической службы России.

Свой профессиональный праздник отечественные шифровальщики отмечают 5 мая. По информации Центра общественных связей ФСБ, служба, созданная постановлением Совета народных комиссаров РСФСР от 5 мая 1921 года, обеспечивает с помощью шифровальных (криптографических) средств защиту информации в информационно-телекоммуникационных системах и системах специальной связи в РФ и ее учреждениях за рубежом, в том числе в системах, использующих современные информационные технологии.

Всемирный день информационного сообщества.

ООН считает этот день праздником для всех представителей ИТ-сообщества. Генеральная Ассамблея ООН в 2006 году приняла резолюцию, в которой провозгласила 17 мая профессиональным праздником всех программистов, системных администраторов, интернет-провайдеров, веб-дизайнеров, редакторов интернет-изданий и всех остальных людей, занятых в сфере информационных технологий. До 2006 года этот праздник отмечался как Международный день электросвязи или Всемирный день телекоммуникаций. Дело в том, что 17 мая 1865 года в Париже был основан международный Телеграфный Союз.

День системного администратора.
Идея праздника пришла в голову сисадмина из Чикаго Теда Кекатоса (Ted Kekatos). Впервые он отмечался 28 июля 2000 года. Кстати, в 2000 году Папа Римский Иоанн Павел II официально назвал Святого Исидора покровителем пользователей компьютеров и интернета. Празднуется День сисадмина в последнюю пятницу июля. В этом году он отмечался 30 числа. Например, в России с 2006 года под Калугой ежегодно проходит Всероссийский слет системных администраторов, с каждым годом собирающий все больше и больше участников. Так, если первый слет посетило около 350 человек, то в 2009 году его участниками стали более 4000 человек из 174 городов России, Украины, Белоруссии и Казахстана.

День тестировщика.
Отмечается 9 сентября. В этот день в 1945 году ученые Гарвардского университета, тестировавшие вычислительную машину Mark II Aiken Relay Calculator, нашли мотылька, застрявшего между контактами электромеханического реле. С тех пор именно эта дата считается профессиональным праздником людей, которые все свое время проводят в поисках багов, уязвимостей, "глюков" и прочих неполадок в ПО.

День программиста.
Профессиональный праздник программистов, отмечаемый на 256-й день года (для программиста это 255-й день года или 0xFF-ный в 16-ричной системе счисления, так как счет начинается с нуля). Число 256 (28) выбрано потому, что это количество чисел, которое можно выразить с помощью восьмиразрядного байта. Отмечается праздник по предложению российского программиста Валентина Балта, сотрудника веб-студии "Параллельные Технологии", который еще в 2002 году собирал подписи под обращением к правительству РФ в поддержку признания этого дня официальным праздником.

В России праздник стал официальным только в этом году. Дело в том, что 11 сентября 2009 года президент Дмитрий Медведев подписал Указ, подготовленный Министерством связи и массовых коммуникаций Российской Федерации, который устанавливает в стране новый официальный праздник - День программиста. В этом году праздник отмечался 13 сентября.

День рождения "смайла".

Это произошло 19 сентября 1982 года, когда профессор Университета Карнеги-Меллона Скотт Фалман (Scott E. Fahlman) впервые предложил использовать три символа, идущие подряд двоеточие, дефис и закрывающую скобку для обозначения "улыбающегося лица". Теперь это сочетание символов используется при онлайн-общении во всем мире, причем "отправить смайлик" могут друг другу не только друзья или знакомые, но и коллеги, а иногда улыбающееся лицо можно увидеть в диалогах между подчиненным и начальником.

Международный День интернета.
Этот праздник предлагали сделать официальным несколько раз в разное время. Однако ни одна из предложенных дат так и не стала традиционной. Что касается России, то на неофициальном уровне Днем интернета считается 30 сентября. Дело в том, что с такой инициативой выступила компания из Москвы "IT Infoart Stars", которая разослала фирмам и организациям предложение поддержать их инициативу, состоящую из двух пунктов: назначить 30 сентября "Днем интернета", ежегодно его праздновать и провести "перепись населения русскоязычного интернета". На тот момент количество пользователей Рунета достигло 1 млн. человек.

Всемирный день информации.
Отмечается 26 ноября по инициативе Международной академии информатизации (МАИ), имеющей генеральный консультативный статус в Экономическом и Социальном советах ООН. Любой человек постоянно имеет дело с информацией, поэтому этот день по праву можно считать профессиональным праздником всех ИТ-специалистов.

Международный день защиты информации.
Данный праздник отмечается с 30 ноября 1988 года по инициативе американской Ассоциации компьютерного оборудования. Цель праздника заключается в напоминании всем о необходимости защиты компьютерной информации, обратив внимание производителей и пользователей аппаратных и программных средств на проблему безопасности. Именно в 1988 году была зафиксирована первая массовая эпидемия компьютерного вируса. Это был червь, получивший название в честь своего автора Морриса.

День рождения отечественной информатики.
В августе 1948 года член-корреспондент АН СССР Исаак Брук совместно с инженером Баширом Рамеевым представил проект автоматической вычислительной машины. А 4 декабря 1948 года Государственный комитет Совета Министров СССР по внедрению передовой техники в народное хозяйство зарегистрировал это изобретение за номером 10475 под названием "Цифровая электронная вычислительная машина".

Вот, пожалуй, и весь список. Хотя уже в следующем году какой-нибудь "айтишник" может придумать еще один необычный праздник, который, возможно, даже сделают официальным. Например, день блогера. А пока этого не произошло, можно выбрать из представленных выше самый подходящий и отметить его по полной программе.

История возникновения сети Интернет

В дословном переводе на русский язык интернет (Internet) – это межсеть, то есть в узком смысле слова интернет – это объединение сетей. Интернет – это всемирная компьютерная сеть. Интернет – это пространство, внутри которого осуществляется непрерывная циркуляция данных.

Фактически Internet состоит из множества локальных и глобальных сетей, принадлежащих различным компаниям и предприятиям, связанных между собой различными линиями связи. Internet можно представить себе в виде мозаики сложенной из небольших сетей разной величины (рис.46), которые активно взаимодействуют одна с другой, пересылая файлы, сообщения и т.п.

Рис.46Структура глобальной сети Internet

Информация в Internet хранится на серверах. Серверы имеют свои адреса и управляются специализированными программами. Они позволяют пересылать почту и файлы, производить поиск в базах данных и выполнять другие задачи.

Обмен информацией между серверами сети выполняется по высокоскоростным каналам связи (выделенным телефонным линиям, оптоволоконным и спутниковым каналам связи). Доступ отдельных пользователей к информационным ресурсам Internet обычно осуществляется через провайдера или корпоративную сеть.

Провайдер - поставщик сетевых услуг – лицо или организация предоставляющие услуги по подключению к компьютерным сетям. В качестве провайдера выступает некоторая организация, имеющая модемный пул для соединения с клиентами и выхода во всемирную сеть.

Основными ячейками глобальной сети являются локальные вычислительные сети. Если некоторая локальная сеть непосредственно подключена к глобальной, то и каждая рабочая станция этой сети может быть подключена к ней.

Существуют также компьютеры, которые непосредственно подключены к глобальной сети. Они называются хост - компьютерами (host - хозяин). Хост – это любой компьютер, являющийся постоянной частью Internet, т.е. соединенный по Internet – протоколу с другим хостом, который в свою очередь, соединен с другим, и так далее.

Отдельные пользователи подключаются к сети через компьютеры местных поставщиков услуг Интернета, Internet - провайдеров (Internet Service Provider - ISP), которые имеют постоянное подключение к Интернет. Региональный провайдер, подключается к более крупному провайдеру национального масштаба, имеющего узлы в различных городах страны. Сети национальных провайдеров объединяются в сети транснациональных провайдеров или провайдеров первого уровня. Объединенные сети провайдеров первого уровня составляют глобальную сеть Internet.

Первый этап развития интернета

Ранние эксперименты по передаче и приему информации с помощью компьютеров начались еще в 50 годах и имели лабораторный характер. Лишь в конце 60 г. на средства Агентства перспективных разработок мин. обороны США была создана первая сеть национального масштаба. Она получила название ARPANET.

Первый серверARPANET был установлен 2 сентября 1969 года в Калифорнийском университете в Лос-Анджелесе. Компьютер Honeywell DP-516 имел 24 Кб оперативной памяти.

29 октября 1969 года в 21:00 между двумя первыми узлами сети ARPANET, находящимися на расстоянии в 640 км - в Калифорнийском университете Лос-Анджелеса (UCLA) и в Стэнфордском исследовательском институте (SRI) - провели сеанс связи. Чарли Клайн пытался выполнить удалённое подключение к компьютеру в SRI. Успешную передачу каждого введённого символа его коллега Билл Дювалль из SRI подтверждал по телефону.

В первый раз удалось отправить всего три символа «LOG», после чего сеть перестала функционировать. LOG должно было быть словом LOGON (команда входа в систему). В рабочее состояние систему вернули уже к 22:30 и следующая попытка оказалась успешной. Именно эту дату можно считать днём рождения Интернета.

К 1971 году была разработана первая программа для отправки электронной почты по сети. Эта программа сразу стала очень популярна.

В 1973 годук сети были подключены через трансатлантический телефонный кабель первые иностранные организации из Великобритании и Норвегии, сеть стала международной.

В 1970-х годах сеть в основном использовалась для пересылки электронной почты, тогда же появились первые списки почтовой рассылки, новостные группы и доски объявлений. Однако в то время сеть ещё не могла легко взаимодействовать с другими сетями, построенными на других технических стандартах. К концу 1970-х годов начали бурно развиваться протоколы передачи данных, которые были стандартизированы в 1982-83 годах. Активную роль в разработке и стандартизации сетевых протоколов играл Джон Постел. 1 января 1983 года сеть ARPANET перешла с протокола NCP на TCP/IP, который успешно применяется до сих пор для объединения (или, как ещё говорят, «наслоения») сетей. Именно в 1983 году термин «Интернет» закрепился за сетью ARPANET.

В 1984 году была разработана система доменных имён (англ. Domain Name System, DNS).

В 1984 году у сети ARPANET появился серьёзный соперник: Национальный научный фонд США (NSF) основал обширную межуниверситетскую сеть NSFNet (англ. National Science Foundation Network), которая была составлена из более мелких сетей (включая известные тогда сети Usenet и Bitnet) и имела гораздо большую пропускную способность, чем ARPANET. К этой сети за год подключились около 10 тыс. компьютеров, звание «Интернет» начало плавно переходить к NSFNet.

В 1988 году был разработан протокол Internet Relay Chat (IRC), благодаря чему в Интернете стало возможно общение в реальном времени (чат).

В 1989 году в Европе, в стенах Европейского совета по ядерным исследованиям (фр. Conseil Européen pour la Recherche Nucléaire, CERN) родилась концепция Всемирной паутины. Её предложил знаменитый британский учёный Тим Бернерс-Ли, он же в течение двух лет разработал протокол HTTP, язык HTML и идентификаторы URI.

В 1990 году сеть ARPANET прекратила своё существование, полностью проиграв конкуренцию NSFNet. В том же году было зафиксировано первое подключение к Интернету по телефонной линии.

Второй этап развития интернета

В 1991 году Всемирная паутина стала общедоступна в Интернете, а в 1993 году появился знаменитый веб-браузер NCSA Mosaic . Всемирная паутина набирала популярность.

В 1995 году NSFNet вернулась к роли исследовательской сети, маршрутизацией всего трафика Интернета теперь занимались сетевые провайдеры, а не суперкомпьютеры Национального научного фонда.

В том же 1995 году Всемирная паутина стала основным поставщиком информации в Интернете, обогнав по трафику протокол пересылки файлов FTP. Был образован Консорциум всемирной паутины (W3C ). Можно сказать, что Всемирная паутина преобразила Интернет и создала его современный облик. С 1996 года Всемирная паутина почти полностью подменяет собой понятие «Интернет».

В 1990-е годы Интернет объединил в себе большинство существовавших тогда сетей (хотя некоторые, как Фидонет, остались обособленными). Объединение выглядело привлекательным благодаря отсутствию единого руководства, а также благодаря открытости технических стандартов Интернета, что делало сети независимыми от бизнеса и конкретных компаний. К 1997 году в Интернете насчитывалось уже около 10 млн. компьютеров, было зарегистрировано более 1 млн. доменных имён. Интернет стал очень популярным средством для обмена информацией.

В начале февраля 2011 произошло знаковое событие в истории Глобальной сети. Организация ICANN (Internet Corporation for Assigned Names and Numbers ) выделила из центрального пула последние блоки адресов IPv4. Это означает, что дельнейшее расширение Интернет зависит только от успешности перехода на новое поколение интернет-протокола, IPv6 .

В настоящее время подключиться к Интернету можно через спутники связи, радио-каналы, кабельное телевидение, телефон, сотовую связь, специальные оптико-волоконные линии или электропровода. Всемирная сеть стала неотъемлемой частью жизни в развитых и развивающихся странах.

Рунет - русскоязычная часть всемирной сети Интернет. Более узкое определение гласит, что Рунет - это часть Всемирной паутины, принадлежащая к национальным доменам.su, .ru и.рф.

1987-94 годы стали ключевыми в зарождении русскоязычного Интернета.

28 августа 1990 года профессиональная научная сеть, выросшая в недрах Института атомной энергии им. И. В. Курчатова и ИПК Минавтопрома и объединившая учёных-физиков и программистов, соединилась с мировой сетью Интернет, положив начало современным российским сетям.

19 сентября 1990 года был зарегистрирован домен первого уровня.su в базе данных Международного информационного центра InterNIC. В результате этого Советский Союз стал доступен через Интернет.

Домен «.рф» , позволяющий использовать в адресе URL кириллические символы, делегирован в корневой зоне DNS 12 мая 2010 года около 17:20 по московскому времени.

По статистике Технического центра «Интернет», на конец 2010 года в зоне.рф зарегистрировано около 700 000 доменов, около 350 000 из них делегировано. По данным Координационного центра национального домена сети Интернет, из доменных имен в зоне.рф, зарегистрированных к настоящему времени, только 8 % представляют собой общеупотребительные слова русского языка. Еще 30 % образованы несколькими словами, все остальные домены представляют собой имена людей, литературных персонажей, названий компаний. Подавляющее большинство имен принадлежит владельцам товарных знаков. Почти половина имен была зарегистрирована в Москве, еще 9 % - в Московской области, 8 % - в Санкт-Петербурге.