Тарифы Услуги Сим-карты

Резонанс в электрических цепях наступает при. Что такое резонанс токов и напряжений

В том случае, когда электрическая цепь содержит элементы с емкостными, а также с индуктивными свойствами может возникнуть режим резонанса. Кроме того, резонанс в электрической цепи появляется в случае совпадения по фазе тока и напряжения. Реактивное сопротивление и проводимость на входе имеют нулевое значение. Полностью отсутствует сдвиг фаз, и цепь становится активной.

Причины резонанса

Резонанс напряжений появляется в случае последовательного соединения участков, содержащих сопротивления индуктивного и емкостного характера, а также резисторы. Такая простая цепь очень часто носит название последовательного или параллельного контура.

В резонансном контуре вовсе не обязательно присутствие резистивного сопротивления. Тем не менее, его необходимо учитывать при определении сопротивления проводников. Таким образом, резонансный режим полностью зависит от параметров и свойств электрической цепи. На него никак не влияют внешние источники электрической энергии.

Для того, чтобы определить условия, при которых возникает режим резонанса, необходимо проверить электрическую цепь с целью определения ее проводимости или комплексного . Кроме того, её мнимая часть должна быть выделена и приравнена к нулю.

Характеристики резонанса

Все параметры, входящие в цепь, и присутствующие в полученном уравнении, так или иначе, влияют на показатели, характеризующие резонансные явления. В зависимости от параметров, входящих в состав уравнения, решение может иметь несколько различных вариантов. При этом, все решения будут соответствовать собственному варианту и в дальнейшем обретать физический смысл.

В различных видах электро цепей, явление резонанса рассматривается, как правило, при анализе в случае нескольких вариантов. В этих же случаях может проводиться синтез цепи, в котором заранее заданы резонансные параметры.

Электрические цепи которые имеют большое количество связей и реактивных элементов, представляют собой серьезную проблему при проведении анализа. Их никогда не используют при синтезе с заранее заданными свойствами, поскольку далеко не всегда возможно получение желаемого результата. Поэтому, в практической деятельности производится исследование двухполюсных приборов самых простых конструкций и на основании полученных данных проводится создание более сложных цепей с заранее заданными параметрами.

Таким образом, резонанс электрической цепи представляет собой достаточно сложное явление, благодаря использованию в ней определенных элементов. Учет этого явления позволяет наиболее полно определить параметры и прочие характеристики.

Резонансы токов и напряжений

В физике резонансом называется явление, при котором в колебательном контуре частота свободных колебаний совпадает с частотой вынужденных колебаний. В электричестве аналогом колебательного контура служит цепь, состоящая из сопротивления, ёмкости и индуктивности. В зависимости от того как они соединены различают резонанс напряжений и резонанс токов .

Резонанс напряжений возникает в последовательной RLC-цепи .

Условием возникновения резонанса является равенство частоты источника питания резонансной частоте w=w р, а следовательно и индуктивного и емкостного сопротивлений x L =x C . Так как они противоположны по знаку, то в результате реактивное сопротивление будет равно нулю. Напряжения на катушке U L и на конденсаторе U C будет противоположны по фазе и компенсировать друг друга. Полное сопротивление цепи при этом будет равно активному сопротивлению R, что в свою очередь вызывает увеличение тока в цепи, а следовательно и напряжение на элементах.

При резонансе напряжения U C и U L могут быть намного больше, чем напряжение , что опасно для цепи.

С увеличением частоты сопротивление катушки увеличивается, а конденсатора уменьшается. В момент времени, когда частота источника будет равна резонансной, они будут равны, а полное сопротивление цепи Z будет наименьшим. Следовательно, ток в цепи будет максимальным.

Из условия равенства индуктивного и емкостного сопротивлений найдем резонансную частоту

Исходя из записанного уравнения, можно сделать вывод, что резонанса в колебательном контуре можно добиться изменением частоты тока источника (частота вынужденных колебаний) или изменением параметров катушки L и конденсатора C.

Следует знать, что в последовательной RLC-цепи, обмен энергией между катушкой и конденсатором осуществляется через источник питания.

Резонанс токов возникает в цепи с параллельно соединёнными катушкой резистором и конденсатором.

Условием возникновения резонанса токов является равенство частоты источника резонансной частоте w=w р, следовательно проводимости B L =B C . То есть при резонансе токов, ёмкостная и индуктивная проводимости равны.

Для наглядности графика, на время отвлечёмся от проводимости и перейдём к сопротивлению. При увеличении частоты полное сопротивление цепи растёт, а ток уменьшается. В момент, когда частота равна резонансной, сопротивление Z максимально, следовательно, ток в цепи принимает наименьшее значение и равен активной составляющей.

Выразим резонансную частоту

Как видно из выражения, резонансная частота определяется, как и в случае с резонансом напряжений.

Режим работы электрической цепи, при котором ток и напряжение на входе цепи совпадают по фазе, называют резонансом . При этом эквивалентное сопротивление всей цепи будет активным. В цепях, состоящих из резистивного, индуктивного и емкостного элементов, различают резонанс напряжений и резонанс токов.

Резонанс напряжений

Резонанс напряжений может иметь место в цепи с последовательно соединенными индуктивным и емкостным элементами. Рассмотрим схему последовательного соединения резистора, индуктивности и емкости (рис. 6.1).


U Х = U L – U C – положительна, и угол сдвига фаз между током и напряжением φ> активно-индуктивным .

2. Пусть индуктивное сопротивление меньше емкостного X L < X C . Тогда и индуктивное напряжение станет меньше емкостного U L < U C , так как ток через элементы протекает один и тот же, а напряжение пропорционально току и сопротивлению. Векторная диаграмма будет иметь вид (рис. 6.3).

Реактивная составляющая напряжения U Х = U L – U C – отрицательна, и угол сдвига фаз между током и напряжением φ < 0. Такой характер цепи является активно- емкостным .

3. Пусть X L = X C , в этом случае индуктивное и емкостное напряжения равны по величине U L = U C . Так как они всегда противоположны по фазе, то они полностью компенсируют друг друга, следовательно, реактивная составляющая U Х = U L – U C = 0. Общее напряжение будет активным и совпадет по фазе с током φ = 0, следовательно, в цепи имеет место резонанс напряжений. Векторная диаграмма для данного случая показана на рис. 6.4.

Из вышесказанного следует, что условием, при котором наступит резонанс напряжений, является равенство индуктивного и емкостного сопротивлений.

Из выражения (6.1) следует, что при резонансе полное сопротивление цепи имеет активный характер.

Резонанс напряжений можно достигнуть подбором трех параметров:

1) изменением частоты колебательного контура , L , C = const;

2) изменением индуктивности контура , , С = const;

3) изменением емкости колебательного контура , , L = const .

При этом все три параметра связаны между собой.

Из условия получаем: , отсюда:

Частоту ω 0 , определяемую из такого условия, называют резонансной.

Если напряжение на зажимах цепи и активное сопротивление цепи R не изменяются, то ток при резонансе имеет максимальное значение

, так как .

Если реактивные сопротивления превосходят при резонансе активное сопротивление:

, ,

то напряжения на зажимах катушки и конденсатора могут существенно превышать напряжение на входе цепи.

Превышение напряжения на реактивных элементах над напряжением на входе принято характеризовать величиной

,

называемой волновым или характеристическим сопротивлением цепи. Волновое сопротивление численно равно индуктивному или емкостному сопротивлению на резонансной частоте.

Кратность превышения напряжения на зажимах индуктивного и емкостного сопротивлений над входным определяют отношением напряжения на реактивном элементе к напряжению на входе цепи на резонансной частоте:

Эта величина называется добротностью контура.

Величина, обратная добротности

называется затуханием контура.



Избирательные свойства колебательного контура определяются его добротностью. Чем больше добротность контура, тем более узкой будет резонансная кривая (рис. 6.5).

Избирательность контура характеризуется полосой пропускания. Полоса пропускания – это диапазон частот, для которых ток ослабляется не более чем в раз по отношению к максимальному значению

.

Ширину полосы пропускания можно определить по формуле

Рассмотрим резонансные кривые тока и напряжений (рис. 6.6).

При неизменных параметрах цепи и неизменном входном напряжении ток определится выражением

.



Рассмотрим это выражение в реперных точках: ; . При нулевой частоте ток в цепи будет постоянным, величина тока , так как конденсатор не пропускает постоянный ток, при резонансной частоте ток максимален – это признак резонанса напряжений . На высоких частотах ток , так как сопротивление катушки становится равным .

Напряжение на индуктивности пропорционально частоте, следовательно, при нулевой частоте напряжение на индуктивности . При все напряжение, подаваемое от источника, приложено к индуктивности, и .

Напряжение на емкости обратно пропорционально частоте, следовательно, при все напряжение приложено к емкости . При , так как равно нулю емкостное сопротивление.

При резонансной частоте индуктивное и емкостное напряжения равны .

Напряжение на резистивном элементе пропорционально току и, следовательно, повторяет форму кривой тока при и , при .

Рассмотрим энергетические соотношения при резонансе.

Мгновенные значения мощности на зажимах катушки и конденсатора определяются выражениями:

;

.

Так как при резонансе , эти мощности в любой момент времени равны и противоположны по знаку. Это значит, что происходит обмен энергией между магнитным полем катушки и электрическим полем конденсатора, но не происходит обмена между источником и реактивными элементами, так как

и ,

то есть суммарная энергия электрического и магнитного полей остается постоянной. Энергия переходит из конденсатора в катушку в течение четверти периода, когда напряжение на конденсаторе убывает, а ток растет. В течение следующей четверти периода энергия переходит из катушки в конденсатор. Источник энергии питает только активное сопротивление.

Резонанс токов

Резонанс в идеальной цепи

Резонанс токов наступает при параллельном соединении индуктивности и емкости. Для обобщения анализов включим в цепь параллельно индуктивности и емкости активное сопротивление (рис. 6.7).


По первому закону Кирхгофа можно записать:

.

Запишем это выражение в комплексной форме:

,

где , , .

Вынесем напряжение за скобку, получим

.

Условием резонанса токов является равенство индуктивной и емкостной проводимостей:

.

Векторная диаграмма для режима резонанса представлена на рис. 6.8. При равенстве индуктивной и емкостной проводимостей будут равны и токи . Направленные в противофазе, эти токи компенсируют друг друга, в цепи остается только активная составляющая тока, и общий ток будет совпадать по фазе с напряжением . Поэтому резонанс называют резонансом токов.

Общий ток в цепи можно представить как ,

где – полная комплексная проводимость, модуль которой равен

.

С учетом условия резонанса, получим, что , то есть проводимость цепи минимальна, следовательно, и ток будет минимальным – это признак резонанса токов.

Из условия резонанса получим выражение для резонансной частоты

То есть, как и при резонансе напряжений, добиться резонанса токов можно, изменяя один из трех параметров ω , L , C .

Резонанс в реальной цепи

Реальная катушка и реальный конденсатор обладают не только реактивным, но и активным сопротивлением. Катушка – сопротивлением обмотки, конденсатор – сопротивлением токам утечки. В этом случае при большой добротности катушки или конденсатора активное сопротивление может оказаться функцией частоты.

Под добротностью катушки будем понимать отношение её индуктивного сопротивления к активному.

Под добротностью конденсатора – отношение его емкостного сопротивления к активному

.

Рассмотрим цепь, содержащую реальные катушку и конденсатор, представленную на рис. 6.9.

Условием резонанса токов в такой цепи является равенство нулю реактивной проводимости .


Комплексную проводимость цепи можно выразить через комплексные сопротивления ветвей:

Знание физики и теории этой науки напрямую связано с ведением домашнего хозяйства, ремонтом, строительство и машиностроением. Предлагаем рассмотреть, что такое резонанс токов и напряжений в последовательном контуре RLC, какое основное условие его образования, а также расчет.

Что такое резонанс?

Определение явления по ТОЭ: электрический резонанс происходит в электрической цепи при определенной резонансной частоте, когда некоторые части сопротивлений или проводимостей элементов схемы компенсируют друг друга. В некоторых схемах это происходит, когда импеданс между входом и выходом схемы почти равен нулю, и функция передачи сигнала близка к единице. При этом очень важна добротность данного контура.

Признаки резонанса :

  1. Составляющие реактивных ветвей тока равны между собой IPC = IPL, противофаза образовывается только при равенстве чистой активной энергии на входе;
  2. Ток в отдельных ветках, превышает весь ток определенной цепи, при этом ветви совпадают по фазе.

Иными словами, резонанс в цепи переменного тока подразумевает специальную частоту, и определяется значениями сопротивления, емкости и индуктивности. Существует два типа резонанса токов:

  1. Последовательный;
  2. Параллельный.

Для последовательного резонанса условие является простым и характеризуется минимальным сопротивлением и нулевой фазе, он используется в реактивных схемах, также его применяет разветвленная цепь. Параллельный резонанс или понятие RLC-контура происходит, когда индуктивные и емкостные данные равны по величине, но компенсируют друг друга, так как они находятся под углом 180 градусов друг от друга. Это соединение должно быть постоянно равным указанной величине. Он получил более широкое практическое применение. Резкий минимум импеданса, который ему свойствен, является полезным для многих электрических бытовых приборов. Резкость минимума зависит от величины сопротивления.

Схема RLC (или контур) является электрической схемой, которая состоит из резистора, катушки индуктивности, и конденсатора, соединенных последовательно или параллельно. Параллельный колебательный контур RLC получил свое название из-за аббревиатуры физических величин, представляющих собой соответственно сопротивление, индуктивность и емкость. Схема образует гармонический осциллятор для тока. Любое колебание индуцированного в цепи тока, затухает с течением времени, если движение направленных частиц, прекращается источником. Этот эффект резистора называется затуханием. Наличие сопротивления также уменьшает пиковую резонансную частоту. Некоторые сопротивление являются неизбежными в реальных схемах, даже если резистор не включен в схему.

Применение

Практически вся силовая электротехника использует именно такой колебательный контур, скажем, силовой трансформатор. Также схема необходима для настройки работы телевизора, емкостного генератора, сварочного аппарата, радиоприемника, её применяет технология «согласование» антенн телевещания, где нужно выбрать узкий диапазон частот некоторых используемых волн. Схема RLC может быть использована в качестве полосового, режекторного фильтра, для датчиков для распределения нижних или верхних частот.

Резонанс даже использует эстетическая медицина (микротоковая терапия), и биорезонансная диагностика.

Принцип резонанса токов

Мы можем сделать резонансную или колебательную схему в собственной частоте, скажем, для питания конденсатора, как демонстрирует следующая диаграмма:


Схема для питания конденсатора

Переключатель будет отвечать за направление колебаний.


Схема: переключатель резонансной схемы

Конденсатор сохраняет весь ток в тот момент, когда время = 0. Колебания в цепи измеряются при помощи амперметров.


Схема: ток в резонансной схеме равен нулю

Направленные частицы перемещаются в правую сторону. Катушка индуктивности принимает ток из конденсатора.

Когда полярность схемы приобретает первоначальный вид, ток снова возвращается в теплообменный аппарат.

Теперь направленная энергия снова переходит в конденсатор, и круг повторяется опять.

В реальных схемах смешанной цепи всегда есть некоторое сопротивление, которое заставляет амплитуду направленных частиц расти меньше с каждым кругом. После нескольких смен полярности пластин, ток снижается до 0. Данный процесс называется синусоидальным затухающим волновым сигналом. Как быстро происходит этот процесс, зависит от сопротивления в цепи. Но при этом сопротивление не изменяет частоту синусоидальной волны. Если сопротивление достаточно высокой, ток не будет колебаться вообще.

Обозначение переменного тока означает, что выходя из блока питания, энергия колеблется с определенной частотой. Увеличение сопротивления способствует к снижению максимального размера текущей амплитуды, но это не приводит к изменению частоты резонанса (резонансной). Зато может образоваться вихретоковый процесс. После его возникновения в сетях возможны перебои.

Расчет резонансного контура

Нужно отметить, что это явление требует весьма тщательного расчета, особенно, если используется параллельное соединение. Для того чтобы в технике не возникали помехи, нужно использовать различные формулы. Они же Вам пригодятся для решения любой задачи по физике из соответствующего раздела.

Очень важно знать, значение мощности в цепи. Средняя мощность, рассеиваемая в резонансном контуре, может быть выражена в терминах среднеквадратичного напряжения и тока следующим образом:

R ср = I 2 конт * R = (V 2 конт / Z 2) * R.

При этом, помните, что коэффициент мощности при резонансе равен cos φ = 1

Сама же формула резонанса имеет следующий вид:

ω 0 = 1 / √L*C

Нулевой импеданс в резонансе определяется при помощи такой формулы:

F рез = 1 / 2π √L*C

Резонансная частота колебаний может быть аппроксимирована следующим образом:

F = 1/2 р (LC) 0.5

Где: F = частота

L = индуктивность

C = емкость

Как правило, схема не будет колебаться, если сопротивление (R) не является достаточно низким, чтобы удовлетворять следующим требованиям:

R = 2 (L / C) 0.5

Для получения точных данных, нужно стараться не округлять полученные значения вследствие расчетов. Многие физики рекомендуют использовать метод, под названием векторная диаграмма активных токов. При правильном расчете и настройке приборов, у Вас получится хорошая экономия переменного тока.