Тарифы Услуги Сим-карты

Дешёвые двухъядерники: AMD Athlon X2 против Intel Pentium. Pentium II - новый чемпион


Выпущенный в 1997, процессор Pentium II являлся адаптацией Pentium Pro для массового рынка. Он был очень похож на Pentium Pro, но кэш-память различалась. Вместо использования кэша на той же частоте, что и процессор (это было дорого), 512 кбайт кэша L2 работали на половинной частоте. Кроме того, Pentium II оставил классический сокет в пользу картриджа, содержащего процессор и кэш второго уровня, который теперь размещался в картридже, а не на материнской плате или упаковке процессора.

Среди новых функций по сравнению с Pentium Pro можно отметить поддержку MMX (SIMD) и удвоенный размер кэша L1. Первый Pentium III (Katmai) был очень похож на Pentium II. Выпущенный в 1999 году, он добавил поддержку инструкций SSE (SIMD), но в остальном остался идентичен.

Intel Pentium II and III
Кодовое название Klamath (Pentium II 0,35 мкм), Deschutes (Pentium II 0,25 мкм), Katmai (Pentium III)
Дата выпуска 1997, 1998, 1999
Архитектура 32 бита
Шина данных 64 бита
Шина адреса 36 битов (32 бита на P III)
Макс. объём памяти 64 Гбайт (4 Гбайт на P III)
Кэш L1 16 + 16 кбайт
Кэш L2 Внешний, 512 кбайт (1/2 частоты CPU)
Тактовая частота 233-300 МГц (Klamath), 300-450 МГц (Deschutes), 450-600 МГц (Klamath)
FSB 66-100-133 МГц
FPU Встроенный
SIMD MMX (SSE)
Техпроцесс 350 нм (Klamath), 250 нм (Deschutes, Katmai)
Число транзисторов 7 500 000 + кэш (Pentium II), 9 500 000 + кэш (Pentium III)
Энергопотребление 25-35 Вт
Напряжение 2,8 В (0,35 мкм), 2 В (0,25 мкм)
Площадь кристалла 204 мм² (0,35 мкм), 131 мм 2 (0,25 мкм), 128 мм 2 (PIII) + кэш
Сокет Slot 1

Pentium II и III оснащались 512 кбайт кэша L2 (31 млн. транзисторов). Но одна разновидность процессора Pentium II оснащалась кэшем L2 объёмом 256 кбайт на кристалле - Pentium II Mobile Dixon. Он использовал 180-нм техпроцесс и был существенно быстрее, чем настольные версии.


В конце 90-х годов Intel выпустила две широко известных марки процессоров: Celeron и Xeon. Первый был нацелен на "бюджетный" рынок, а последней - на серверы и рабочие станции. Первый Celeron (Covington) представлял собой Pentium II без кэша второго уровня и давал слишком низкую производительность, а Pentium II Xeon, напротив, оснащался кэшем большого объёма. Обе марки до сих пор существуют: Celeron для рынка начального уровня (как правило, со сниженным размером кэша и менее скоростной FSB) и Xeon для серверов (с быстрой FSB, иногда с большим кэшем и более высокими тактовыми частотами).

Intel быстро добавила к Celeron 128 кбайт кэша второго уровня в модели Mendocino. Celeron 300A славился своими прекрасными возможностями разгона, позволяя достигать прирост частоты 50% или больше по сравнению со штатной частотой - весьма немало в то время.

Intel Celeron и Intel Xeon
Кодовое название Covington, Mendocino Drake
Дата выпуска 1998 1998
Архитектура 32 бита 32 бита
Шина данных 64 бита 64 бита
Шина адреса 32 бита 36 битов
Макс. объём памяти 4 Гбайт 64 Гбайт
Кэш L1 16 + 16 кбайт 16 + 16 кбайт
Кэш L2 0 кбайт/128 кбайт (встроенный, на частоте CPU) Внешний, 512 - 2408 кбайт (на частоте CPU)
Тактовая частота 266-300 МГц/300-533 МГц 400-450 МГц
FSB 66 МГц 100 МГц
FPU Встроенный Встроенный
SIMD MMX MMX
Техпроцесс 250 нм 250 нм
Число транзисторов 7 500 000/19 000 000 7 500 000 + кэш
Энергопотребление 16-28 Вт 30-46 Вт
Напряжение 2 В 2 В
Площадь кристалла 131 мм²/154 мм 2 131 мм² + кэш
Сокет Slot1/Socket 370 PPGA Slot 2

Подобно Pentium II, процессор Xeon обладал внешним кэшем L2 внутри картриджа процессора. Его ёмкость составляла от 512 кбайт до 2 Мбайт, а число транзисторов - от 31 до 124 млн.

Pentium III достигает 1 ГГц


Нажмите на картинку для увеличения.

Pentium III Coppermine стал первым серийным процессором x86, который смог достичь частоты 1 ГГц; была выпущена даже версия на 1,13 ГГц, но она быстро покинула рынок из-за проблем со стабильностью. Новая версия Pentium III отличалась улучшенным кэшем второго уровня - теперь он "поселился" на кристалл. Он был быстрее, чем 512 кбайт внешнего кэша на первой модели, и в то время рекламировался как функция, увеличивающая скорость работы в Интернете. Процессор был выпущен ещё в трёх версиях: серверной (Xeon), начального уровня (Celeron) и мобильной (с первым вариантом технологии SpeedStep).

Intel Pentium III
Кодовое название Coppermine
Дата выпуска 1999
Архитектура 32 бита
Шина данных 64 бита
Шина адреса 32 бита
Макс. объём памяти 4 Гбайт
Кэш L1 16 + 16 кбайт
Кэш L2 Встроенный, 256 кбайт (на частоте CPU)
Тактовая частота 500-1133 МГц
FSB 100-133 МГЦ
FPU Встроенный
SIMD MMX (SSE)
Техпроцесс 180 нм
Число транзисторов 28,1 млн.
Энергопотребление 25-35 Вт
Напряжение 1,6 В, 1,8 В
Площадь кристалла 106 мм²
Сокет Slot 1-Socket 370 FCPGA

В 2002 году появилась чуть более улучшенная версия Tualatin с большим кэшем L2 (512 кбайт) и 130-нм техпроцессом. Она позиционировалась на серверы (PIII-S) и мобильные устройства, и в компьютерах потребительского уровня встречалась нечасто.

И tag-RAM. К микросхеме процессора с помощью упругих пластинок и штифтов прижата теплораспределительная пластина (на неё, в свою очередь, устанавливается кулер). Маркировка процессора находится на картридже. Процессор предназначен для установки в 242-контактный щелевой разъём Slot 1 . Кэш-память второго уровня работает на половине частоты ядра . В корпусе типа SECC выпускались все процессоры на ядре Klamath, ранние модели на ядре Deschutes с частотами 266-333 МГц и часть поздних моделей на этом ядре.

Основным отличием корпуса типа SECC2 от SECC является отсутствие теплораспределительной пластины. Кулер, установленный на процессор в корпусе типа SECC2, контактирует непосредственно с микросхемой процессора. В корпусе типа SECC2 выпускались часть поздних моделей Pentium II на ядре Deschutes с частотами 350-450 МГц.

Существует также вариант Pentium II OverDrive в корпусе PGA (устанавливается в гнездовой разъём Socket 8) с полноскоростным кэшем второго уровня, предназначенный для замены Pentium Pro .

Модели

Первые процессоры Pentium II (Klamath) были предназначены для рынка настольных персональных компьютеров и производились по 350 нм технологии. Дальнейшим развитием семейства десктопных Pentium II стало 250 нм ядро Deschutes. Через некоторое время вышли процессоры Mobile Pentium II, предназначенный для установки в ноутбуки , и Xeon , ориентированный на высокопроизводительные системы и серверы. На базе ядра Deschutes выпускались также процессоры Celeron (Covington), предназначенные для использования в недорогих компьютерах. Они представляли собой Pentium II, лишённый картриджа и кэша второго уровня.

Процессоры Pentium II для настольных компьютеров (desktop)
Кодовое имя ядра Klamath Deschutes
Тактовая частота ядра (МГц) 233 266 300 266 300 333 350 400 450
Анонсирован 7 мая 14 июля 1997 1 сентября 26 января 1998 15 апреля 1998 24 августа 1998
Цена, долл. США 636 775 1981 - - 772 621 824 669

Pentium II

Klamath

Ядро Klamath является эволюционным продолжением ядра P6, на котором был построен Pentium Pro . Кэш-память первого уровня увеличена с 16 до 32 Кб, добавлен блок SIMD -инструкций MMX , внесены изменения с целью повышения производительности при работе с 16-битным кодом. Процессор имеет возможность работы в двухпроцессорных системах (в отличие от Pentium Pro , способного работать в четырёхпроцессорных системах) .

Кэш второго уровня был вынесен из корпуса процессора, в результате чего стоимость производства процессора была существенно снижена, так как это позволяло Intel не заниматься производством микросхем кэш-памяти, а закупать их (использовались микросхемы BSRAM производства Toshiba , SEC и NEC). Кэш объёмом 512 Кб (четыре микросхемы, расположенные на обеих сторонах процессорной платы) работал на половине частоты ядра.

Процессор выпускался по 350 нм технологии, имел напряжение ядра 2,8 В, выделял большое количество тепла и не обладал высоким частотным потенциалом .

Все процессоры на ядре Klamath выпускались в картридже SECC (полностью закрытый картридж с пластиной теплоотвода).



Deschutes

Ранние процессоры с ядром Deschutes, как и Klamath, имели картридж типа SECC . Охлаждение кэш-памяти в этом картридже было затруднено: пластина теплоотвода не касалась микросхем BSRAM , поэтому сначала пластина теплоотвода была модернизирована (появились выступы, позволяющие осуществить контакт с микросхемами), а затем исчезла. Картридж без теплоотводной пластины получил наименование SECC2 .

Чтобы отличить модели, работающие на одинаковых частотах (266 и 300 МГц), но имеющие разные ядра, у процессоров, построенных на ядре Deschutes, в конце названия дописывали литеру «A». Ранние процессоры (с частотами 266, 300, 333, 350 и 400 МГц) имели размер кристалла 131 мм², с выходом новой ревизии размеры кристалла уменьшились до 118 мм². Процессоры с частотой 350 МГц и выше работали с внешней частотой 100 МГц. Модифицированное ядро Deschutes, в котором появился блок SSE , получило наименование Katmai и легло в основу следующего процессора компании Intel - Pentium III .




Pentium II OverDrive


Mobile Pentium II

Мобильные процессоры Mobile Pentium II выпускались на основе ядер Tonga и Dixon. Они отличались пониженным напряжением питания, имели небольшое тепловыделение , что и позволяло использовать их в ноутбуках и лэптопах .

Процессоры на ядре Tonga выпускались c 2 апреля 1998 года по 250 нм . технологии в корпусе BGA и устанавливались в картридж вместе с микросхемами кэш-памяти второго уровня общим объёмом 512 Кб .

Процессоры на ядре Dixon выпускались по 180 нм. технологии и имели интегрированный кэш второго уровня объёмом 256 Кб , работавший на частоте ядра. Эти процессоры имели корпус BGA или mPGA и могли устанавливаться либо в картридж, либо непосредственно на системную плату .





Положение на рынке и сравнение с конкурентами

Pentium II являлся флагманским процессором компании Intel для настольных компьютеров с момента выхода в мае 1997 года и до появления на рынке процессора Pentium III в феврале 1999 года . Параллельно с Pentium II существовали следующие x86-процессоры:

Технические характеристики

Klamath Deschutes P6T Tonga Dixon
Десктопный Overdrive Мобильный
Тактовая частота
Частота ядра, МГц 233 - 300 266 - 450 333 (300) 233 - 300 266 - 400
Частота FSB , МГц 66 66, 100 66 (60) 66 66, 100
Характеристики ядра
Набор инструкций IA-32 , MMX
Разрядность регистров 32 бит (целочисленные), 80 бит (вещественночисленные), 64 бит (MMX)
Глубина конвейера Целочисленный: 12 - 17 стадий (в зависимости от типа исполняемой инструкции), вещественночисленный: 25 стадий
Разрядность ША 36 бит
Разрядность ШД 64 бит
Количество транзисторов , млн. 7,5 27,4
Кэш L1
Кэш данных 16 Кб, 4-канальный наборно-ассоциативный, длина строки - 32 байта, двухпортовый
Кэш инструкций 16 Кб, 4-канальный наборно-ассоциативный, длина строки - 32 байта
Кэш L2
Объём, Кб 512 256
Частота ½ частоты ядра частота ядра ½ частоты ядра частота ядра
Разрядность BSB 64 бит
Организация Объединённый, наборно-ассоциативный, неблокируемый; длина строки - 32 байта
Ассоциативность 4-канальный
Интерфейс
Разъём Slot 1 Socket 8 MMC MMC , SMD
Корпус LGA в картридже SECC LGA или OLGA в картридже SECC или SECC2 SPGA BGA BGA , mPGA
Шина GTL +
Технологические, электрические и тепловые характеристики
Технология производства 350 нм. CMOS (четырёхслойный, алюминиевые соединения) 250 нм. CMOS (пятислойный, алюминиевые соединения) 180 нм. CMOS (алюминиевые соединения)
Площадь кристалла, мм² 203 131 (рев. A0)
118
118 180
Напряжение ядра, В 2,8 2 1,6 1,5 - 1,6
Напряжение кэша L2, В 3,3 напряжение ядра
Напряжение цепей I/O , В 3,3
Максимальное тепловыделение, Вт 43 27,1 11,6 13,1

Ревизии ядер процессоров

Pentium II

Klamath

Ревизия CPU Id Примечание
C0 0x633h мод. SL264, SL265, SL268, SL269, SL28K, SL28L, SL28R, SL2MZ
C1 0x634h мод. SL2HA, SL2HC, SL2HD, SL2HE, SL2HF, SL2QA, SL2QB, SL2QC

Deschutes

Ревизия CPU Id Примечание
A0 0x650h мод. SL2KA, SL2QF, SL2K9
A1 0x651h мод. SL35V, SL2QH, SL2S5, SL2ZP, SL2ZQ, SL2S6, SL2S7, SL2SF, SL2SH, SL2VY
B0 0x652h мод. SL33D, SL2YK, SL2WZ, SL2YM, SL37G, SL2WB, SL37H, SL2W7, SL2W8, SL2TV, SL2U3, SL2U4, SL2U5, SL2U6, SL2U7, SL356, SL357, SL358, SL37F, SL3FN, SL3EE, SL3F9, SL2WY
B1 0x653h мод. SL38M, SL38N, SL36U, SL38Z, SL3D5, SL3J2

Pentium II OverDrive

Mobile Pentium II

Ревизия CPU Id Примечание
MDA0 0x650h мод. SL2KH, SL2KJ: 512Kb L2-кэша, мини-картридж
MDB0 0x652h мод. SL2RS, SL2RR, SL2RQ: 512Kb L2-кэша, мини-картридж
MDBA0 0x66Ah мод. SL3AG, SL32S, SL32R, SL32Q, SL3DR: 256Kb L2-кэша, BGA
MDPA0 0x66Ah мод. SL3HL, SL3HK, SL3HJ, SL3HH: 256Kb L2-кэша, microPGA
MDXA0 0x66Ah мод. SL3JW, SL36Z, SL32P, SL32N, SL32M: 256Kb L2-кэша, мини-картридж
MQBA1 0x66Ah мод. SL3EM: 256Kb L2-кэша, BGA, 180 нм технология
MQPA1 0x66Ah мод. SL3BW: 256Kb L2-кэша, microPGA, 180 нм технология

Обновление микрокода процессора

Обновления микрокода представляют собой блоки данных объёмом 2 Кб, находящиеся в системном BIOS. Такие блоки существуют для каждой ревизии ядра процессора. Компания Intel предоставляет производителям BIOS последние версии микрокода, а также помещает их в базу данных обновлений. Существует специальная утилита, разработанная компанией Intel , позволяющая определить используемый процессор и локально изменить код BIOS для поддержки этого процессора. Обновление также можно осуществить прошивкой новой версии BIOS с поддержкой необходимого процессора от производителя системной платы .

Исправленные ошибки

Процессор представляет собой сложное микроэлектронное устройство, что не позволяет исключить вероятность его некорректной работы. Ошибки появляются на этапе проектирования и могут быть исправлены обновлениями микрокода процессора, либо выпуском новой ревизии ядра процессора. В процессорах Pentium II обнаружено 95 различных ошибок, из которых 23 исправлены .

Далее перечислены ошибки, исправленные в различных ревизиях ядер процессора Pentium II. Данные ошибки присутствуют во всех ядрах, выпущенных до их исправления, начиная с ядра Klamath C0, если не указано обратное.

Klamath C1

  • Ошибка протокола при работе с кэш-памятью.
  • Возникновение тупиков при работе с IOQ (очередь ввода-вывода) глубиной 1 в двухпроцессорных системах.
  • Ошибка при работе инструкции FIST с некоторыми неверными данными.

Deschutes A0

  • Ошибка предсказания ветвлений при работе с инструкциями MMX .
  • Ошибка установки сигнала отключения при превышении максимально допустимой температуры.
  • Генерация необратимой ошибки при нарушении чётности в IFU.
  • Генерация необратимой ошибки при различии данных в потоковом буфере инструкций и кэше инструкций.
  • Ошибка при работе с некэшируемыми данными после отключения и повторного включения страничной адресации.
  • Ошибка в работе PMC при запросе к кэш-памяти второго уровня.
  • Ошибочная генерация исключения «user mode protection violation» вместо установки сигнала «page fault».
  • Отключение MCE для кэш-памяти второго уровня при очистке кэш-памяти.
  • Некорректная установка флагов процессора после отключения TLB в двухпроцессорных системах.

Deschutes A1

  • Повреждение информации о состоянии данных в кэш-памяти (Deschutes A0 ).
  • Генерация необратимой ошибки при кэш-промахе (Deschutes A0 ).

Deschutes B1

  • Задержка инвалидации данных, находящихся в кэш-памяти, при аппаратной синхронизации в двухпроцессорных системах.
  • Преждевременное снятие сигнала блокировки при выполнении некоторой последовательности транзакций.
  • Задержка генерации исключения FPU .
  • BIST (встроенная самодиагностика) сообщает об успешном завершении вне зависимости от результата (Deschutes A0 ).
  • Отсутствие сигнала отключения при превышении максимально допустимой температуры. (Deschutes A0 ).
  • Ошибка записи в память при работе инструкций MOVD и MOVQ (MMX).
  • Конфликт протокола шины при работе с некоторыми чипсетами.
  • Ошибки при работе с отключённым MTRR (Deschutes A0 ).

Напишите отзыв о статье "Pentium II"

Примечания

Ссылки

Официальная информация

  • (англ.)
  • (англ.)

Характеристики процессоров

  • (англ.)
  • (англ.)
  • (англ.)
  • (англ.)

Описание архитектуры и история процессоров

Обзоры и тестирование

Разное

  • (англ.)
  • (англ.)

Отрывок, характеризующий Pentium II

Она смутилась, оглянулась вокруг себя и, увидев брошенную на кадке свою куклу, взяла ее в руки.
– Поцелуйте куклу, – сказала она.
Борис внимательным, ласковым взглядом смотрел в ее оживленное лицо и ничего не отвечал.
– Не хотите? Ну, так подите сюда, – сказала она и глубже ушла в цветы и бросила куклу. – Ближе, ближе! – шептала она. Она поймала руками офицера за обшлага, и в покрасневшем лице ее видны были торжественность и страх.
– А меня хотите поцеловать? – прошептала она чуть слышно, исподлобья глядя на него, улыбаясь и чуть не плача от волненья.
Борис покраснел.
– Какая вы смешная! – проговорил он, нагибаясь к ней, еще более краснея, но ничего не предпринимая и выжидая.
Она вдруг вскочила на кадку, так что стала выше его, обняла его обеими руками, так что тонкие голые ручки согнулись выше его шеи и, откинув движением головы волосы назад, поцеловала его в самые губы.
Она проскользнула между горшками на другую сторону цветов и, опустив голову, остановилась.
– Наташа, – сказал он, – вы знаете, что я люблю вас, но…
– Вы влюблены в меня? – перебила его Наташа.
– Да, влюблен, но, пожалуйста, не будем делать того, что сейчас… Еще четыре года… Тогда я буду просить вашей руки.
Наташа подумала.
– Тринадцать, четырнадцать, пятнадцать, шестнадцать… – сказала она, считая по тоненьким пальчикам. – Хорошо! Так кончено?
И улыбка радости и успокоения осветила ее оживленное лицо.
– Кончено! – сказал Борис.
– Навсегда? – сказала девочка. – До самой смерти?
И, взяв его под руку, она с счастливым лицом тихо пошла с ним рядом в диванную.

Графиня так устала от визитов, что не велела принимать больше никого, и швейцару приказано было только звать непременно кушать всех, кто будет еще приезжать с поздравлениями. Графине хотелось с глазу на глаз поговорить с другом своего детства, княгиней Анной Михайловной, которую она не видала хорошенько с ее приезда из Петербурга. Анна Михайловна, с своим исплаканным и приятным лицом, подвинулась ближе к креслу графини.
– С тобой я буду совершенно откровенна, – сказала Анна Михайловна. – Уж мало нас осталось, старых друзей! От этого я так и дорожу твоею дружбой.
Анна Михайловна посмотрела на Веру и остановилась. Графиня пожала руку своему другу.
– Вера, – сказала графиня, обращаясь к старшей дочери, очевидно, нелюбимой. – Как у вас ни на что понятия нет? Разве ты не чувствуешь, что ты здесь лишняя? Поди к сестрам, или…
Красивая Вера презрительно улыбнулась, видимо не чувствуя ни малейшего оскорбления.
– Ежели бы вы мне сказали давно, маменька, я бы тотчас ушла, – сказала она, и пошла в свою комнату.
Но, проходя мимо диванной, она заметила, что в ней у двух окошек симметрично сидели две пары. Она остановилась и презрительно улыбнулась. Соня сидела близко подле Николая, который переписывал ей стихи, в первый раз сочиненные им. Борис с Наташей сидели у другого окна и замолчали, когда вошла Вера. Соня и Наташа с виноватыми и счастливыми лицами взглянули на Веру.
Весело и трогательно было смотреть на этих влюбленных девочек, но вид их, очевидно, не возбуждал в Вере приятного чувства.
– Сколько раз я вас просила, – сказала она, – не брать моих вещей, у вас есть своя комната.
Она взяла от Николая чернильницу.
– Сейчас, сейчас, – сказал он, мокая перо.
– Вы всё умеете делать не во время, – сказала Вера. – То прибежали в гостиную, так что всем совестно сделалось за вас.
Несмотря на то, или именно потому, что сказанное ею было совершенно справедливо, никто ей не отвечал, и все четверо только переглядывались между собой. Она медлила в комнате с чернильницей в руке.
– И какие могут быть в ваши года секреты между Наташей и Борисом и между вами, – всё одни глупости!
– Ну, что тебе за дело, Вера? – тихеньким голоском, заступнически проговорила Наташа.
Она, видимо, была ко всем еще более, чем всегда, в этот день добра и ласкова.
– Очень глупо, – сказала Вера, – мне совестно за вас. Что за секреты?…
– У каждого свои секреты. Мы тебя с Бергом не трогаем, – сказала Наташа разгорячаясь.
– Я думаю, не трогаете, – сказала Вера, – потому что в моих поступках никогда ничего не может быть дурного. А вот я маменьке скажу, как ты с Борисом обходишься.
– Наталья Ильинишна очень хорошо со мной обходится, – сказал Борис. – Я не могу жаловаться, – сказал он.
– Оставьте, Борис, вы такой дипломат (слово дипломат было в большом ходу у детей в том особом значении, какое они придавали этому слову); даже скучно, – сказала Наташа оскорбленным, дрожащим голосом. – За что она ко мне пристает? Ты этого никогда не поймешь, – сказала она, обращаясь к Вере, – потому что ты никогда никого не любила; у тебя сердца нет, ты только madame de Genlis [мадам Жанлис] (это прозвище, считавшееся очень обидным, было дано Вере Николаем), и твое первое удовольствие – делать неприятности другим. Ты кокетничай с Бергом, сколько хочешь, – проговорила она скоро.
– Да уж я верно не стану перед гостями бегать за молодым человеком…
– Ну, добилась своего, – вмешался Николай, – наговорила всем неприятностей, расстроила всех. Пойдемте в детскую.
Все четверо, как спугнутая стая птиц, поднялись и пошли из комнаты.
– Мне наговорили неприятностей, а я никому ничего, – сказала Вера.
– Madame de Genlis! Madame de Genlis! – проговорили смеющиеся голоса из за двери.
Красивая Вера, производившая на всех такое раздражающее, неприятное действие, улыбнулась и видимо не затронутая тем, что ей было сказано, подошла к зеркалу и оправила шарф и прическу. Глядя на свое красивое лицо, она стала, повидимому, еще холоднее и спокойнее.

В гостиной продолжался разговор.
– Ah! chere, – говорила графиня, – и в моей жизни tout n"est pas rose. Разве я не вижу, что du train, que nous allons, [не всё розы. – при нашем образе жизни,] нашего состояния нам не надолго! И всё это клуб, и его доброта. В деревне мы живем, разве мы отдыхаем? Театры, охоты и Бог знает что. Да что обо мне говорить! Ну, как же ты это всё устроила? Я часто на тебя удивляюсь, Annette, как это ты, в свои годы, скачешь в повозке одна, в Москву, в Петербург, ко всем министрам, ко всей знати, со всеми умеешь обойтись, удивляюсь! Ну, как же это устроилось? Вот я ничего этого не умею.
– Ах, душа моя! – отвечала княгиня Анна Михайловна. – Не дай Бог тебе узнать, как тяжело остаться вдовой без подпоры и с сыном, которого любишь до обожания. Всему научишься, – продолжала она с некоторою гордостью. – Процесс мой меня научил. Ежели мне нужно видеть кого нибудь из этих тузов, я пишу записку: «princesse une telle [княгиня такая то] желает видеть такого то» и еду сама на извозчике хоть два, хоть три раза, хоть четыре, до тех пор, пока не добьюсь того, что мне надо. Мне всё равно, что бы обо мне ни думали.
– Ну, как же, кого ты просила о Бореньке? – спросила графиня. – Ведь вот твой уже офицер гвардии, а Николушка идет юнкером. Некому похлопотать. Ты кого просила?
– Князя Василия. Он был очень мил. Сейчас на всё согласился, доложил государю, – говорила княгиня Анна Михайловна с восторгом, совершенно забыв всё унижение, через которое она прошла для достижения своей цели.
– Что он постарел, князь Василий? – спросила графиня. – Я его не видала с наших театров у Румянцевых. И думаю, забыл про меня. Il me faisait la cour, [Он за мной волочился,] – вспомнила графиня с улыбкой.
– Всё такой же, – отвечала Анна Михайловна, – любезен, рассыпается. Les grandeurs ne lui ont pas touriene la tete du tout. [Высокое положение не вскружило ему головы нисколько.] «Я жалею, что слишком мало могу вам сделать, милая княгиня, – он мне говорит, – приказывайте». Нет, он славный человек и родной прекрасный. Но ты знаешь, Nathalieie, мою любовь к сыну. Я не знаю, чего я не сделала бы для его счастья. А обстоятельства мои до того дурны, – продолжала Анна Михайловна с грустью и понижая голос, – до того дурны, что я теперь в самом ужасном положении. Мой несчастный процесс съедает всё, что я имею, и не подвигается. У меня нет, можешь себе представить, a la lettre [буквально] нет гривенника денег, и я не знаю, на что обмундировать Бориса. – Она вынула платок и заплакала. – Мне нужно пятьсот рублей, а у меня одна двадцатипятирублевая бумажка. Я в таком положении… Одна моя надежда теперь на графа Кирилла Владимировича Безухова. Ежели он не захочет поддержать своего крестника, – ведь он крестил Борю, – и назначить ему что нибудь на содержание, то все мои хлопоты пропадут: мне не на что будет обмундировать его.
Графиня прослезилась и молча соображала что то.
– Часто думаю, может, это и грех, – сказала княгиня, – а часто думаю: вот граф Кирилл Владимирович Безухой живет один… это огромное состояние… и для чего живет? Ему жизнь в тягость, а Боре только начинать жить.
– Он, верно, оставит что нибудь Борису, – сказала графиня.
– Бог знает, chere amie! [милый друг!] Эти богачи и вельможи такие эгоисты. Но я всё таки поеду сейчас к нему с Борисом и прямо скажу, в чем дело. Пускай обо мне думают, что хотят, мне, право, всё равно, когда судьба сына зависит от этого. – Княгиня поднялась. – Теперь два часа, а в четыре часа вы обедаете. Я успею съездить.
И с приемами петербургской деловой барыни, умеющей пользоваться временем, Анна Михайловна послала за сыном и вместе с ним вышла в переднюю.
– Прощай, душа моя, – сказала она графине, которая провожала ее до двери, – пожелай мне успеха, – прибавила она шопотом от сына.
– Вы к графу Кириллу Владимировичу, ma chere? – сказал граф из столовой, выходя тоже в переднюю. – Коли ему лучше, зовите Пьера ко мне обедать. Ведь он у меня бывал, с детьми танцовал. Зовите непременно, ma chere. Ну, посмотрим, как то отличится нынче Тарас. Говорит, что у графа Орлова такого обеда не бывало, какой у нас будет.

– Mon cher Boris, [Дорогой Борис,] – сказала княгиня Анна Михайловна сыну, когда карета графини Ростовой, в которой они сидели, проехала по устланной соломой улице и въехала на широкий двор графа Кирилла Владимировича Безухого. – Mon cher Boris, – сказала мать, выпрастывая руку из под старого салопа и робким и ласковым движением кладя ее на руку сына, – будь ласков, будь внимателен. Граф Кирилл Владимирович всё таки тебе крестный отец, и от него зависит твоя будущая судьба. Помни это, mon cher, будь мил, как ты умеешь быть…
– Ежели бы я знал, что из этого выйдет что нибудь, кроме унижения… – отвечал сын холодно. – Но я обещал вам и делаю это для вас.
Несмотря на то, что чья то карета стояла у подъезда, швейцар, оглядев мать с сыном (которые, не приказывая докладывать о себе, прямо вошли в стеклянные сени между двумя рядами статуй в нишах), значительно посмотрев на старенький салоп, спросил, кого им угодно, княжен или графа, и, узнав, что графа, сказал, что их сиятельству нынче хуже и их сиятельство никого не принимают.
– Мы можем уехать, – сказал сын по французски.
– Mon ami! [Друг мой!] – сказала мать умоляющим голосом, опять дотрогиваясь до руки сына, как будто это прикосновение могло успокоивать или возбуждать его.
Борис замолчал и, не снимая шинели, вопросительно смотрел на мать.
– Голубчик, – нежным голоском сказала Анна Михайловна, обращаясь к швейцару, – я знаю, что граф Кирилл Владимирович очень болен… я затем и приехала… я родственница… Я не буду беспокоить, голубчик… А мне бы только надо увидать князя Василия Сергеевича: ведь он здесь стоит. Доложи, пожалуйста.
Швейцар угрюмо дернул снурок наверх и отвернулся.
– Княгиня Друбецкая к князю Василию Сергеевичу, – крикнул он сбежавшему сверху и из под выступа лестницы выглядывавшему официанту в чулках, башмаках и фраке.
Мать расправила складки своего крашеного шелкового платья, посмотрелась в цельное венецианское зеркало в стене и бодро в своих стоптанных башмаках пошла вверх по ковру лестницы.
– Mon cher, voue m"avez promis, [Мой друг, ты мне обещал,] – обратилась она опять к Сыну, прикосновением руки возбуждая его.
Сын, опустив глаза, спокойно шел за нею.
Они вошли в залу, из которой одна дверь вела в покои, отведенные князю Василью.
В то время как мать с сыном, выйдя на середину комнаты, намеревались спросить дорогу у вскочившего при их входе старого официанта, у одной из дверей повернулась бронзовая ручка и князь Василий в бархатной шубке, с одною звездой, по домашнему, вышел, провожая красивого черноволосого мужчину. Мужчина этот был знаменитый петербургский доктор Lorrain.
– C"est donc positif? [Итак, это верно?] – говорил князь.
– Mon prince, «errare humanum est», mais… [Князь, человеку ошибаться свойственно.] – отвечал доктор, грассируя и произнося латинские слова французским выговором.
– C"est bien, c"est bien… [Хорошо, хорошо…]
Заметив Анну Михайловну с сыном, князь Василий поклоном отпустил доктора и молча, но с вопросительным видом, подошел к ним. Сын заметил, как вдруг глубокая горесть выразилась в глазах его матери, и слегка улыбнулся.
– Да, в каких грустных обстоятельствах пришлось нам видеться, князь… Ну, что наш дорогой больной? – сказала она, как будто не замечая холодного, оскорбительного, устремленного на нее взгляда.
Князь Василий вопросительно, до недоумения, посмотрел на нее, потом на Бориса. Борис учтиво поклонился. Князь Василий, не отвечая на поклон, отвернулся к Анне Михайловне и на ее вопрос отвечал движением головы и губ, которое означало самую плохую надежду для больного.
– Неужели? – воскликнула Анна Михайловна. – Ах, это ужасно! Страшно подумать… Это мой сын, – прибавила она, указывая на Бориса. – Он сам хотел благодарить вас.
Борис еще раз учтиво поклонился.
– Верьте, князь, что сердце матери никогда не забудет того, что вы сделали для нас.
– Я рад, что мог сделать вам приятное, любезная моя Анна Михайловна, – сказал князь Василий, оправляя жабо и в жесте и голосе проявляя здесь, в Москве, перед покровительствуемою Анною Михайловной еще гораздо большую важность, чем в Петербурге, на вечере у Annette Шерер.
– Старайтесь служить хорошо и быть достойным, – прибавил он, строго обращаясь к Борису. – Я рад… Вы здесь в отпуску? – продиктовал он своим бесстрастным тоном.
– Жду приказа, ваше сиятельство, чтоб отправиться по новому назначению, – отвечал Борис, не выказывая ни досады за резкий тон князя, ни желания вступить в разговор, но так спокойно и почтительно, что князь пристально поглядел на него.
– Вы живете с матушкой?
– Я живу у графини Ростовой, – сказал Борис, опять прибавив: – ваше сиятельство.
– Это тот Илья Ростов, который женился на Nathalie Шиншиной, – сказала Анна Михайловна.
– Знаю, знаю, – сказал князь Василий своим монотонным голосом. – Je n"ai jamais pu concevoir, comment Nathalieie s"est decidee a epouser cet ours mal – leche l Un personnage completement stupide et ridicule.Et joueur a ce qu"on dit. [Я никогда не мог понять, как Натали решилась выйти замуж за этого грязного медведя. Совершенно глупая и смешная особа. К тому же игрок, говорят.]
– Mais tres brave homme, mon prince, [Но добрый человек, князь,] – заметила Анна Михайловна, трогательно улыбаясь, как будто и она знала, что граф Ростов заслуживал такого мнения, но просила пожалеть бедного старика. – Что говорят доктора? – спросила княгиня, помолчав немного и опять выражая большую печаль на своем исплаканном лице.
– Мало надежды, – сказал князь.
– А мне так хотелось еще раз поблагодарить дядю за все его благодеяния и мне и Боре. C"est son filleuil, [Это его крестник,] – прибавила она таким тоном, как будто это известие должно было крайне обрадовать князя Василия.
Князь Василий задумался и поморщился. Анна Михайловна поняла, что он боялся найти в ней соперницу по завещанию графа Безухого. Она поспешила успокоить его.
– Ежели бы не моя истинная любовь и преданность дяде, – сказала она, с особенною уверенностию и небрежностию выговаривая это слово: – я знаю его характер, благородный, прямой, но ведь одни княжны при нем…Они еще молоды… – Она наклонила голову и прибавила шопотом: – исполнил ли он последний долг, князь? Как драгоценны эти последние минуты! Ведь хуже быть не может; его необходимо приготовить ежели он так плох. Мы, женщины, князь, – она нежно улыбнулась, – всегда знаем, как говорить эти вещи. Необходимо видеть его. Как бы тяжело это ни было для меня, но я привыкла уже страдать.
Князь, видимо, понял, и понял, как и на вечере у Annette Шерер, что от Анны Михайловны трудно отделаться.
– Не было бы тяжело ему это свидание, chere Анна Михайловна, – сказал он. – Подождем до вечера, доктора обещали кризис.
– Но нельзя ждать, князь, в эти минуты. Pensez, il у va du salut de son ame… Ah! c"est terrible, les devoirs d"un chretien… [Подумайте, дело идет о спасения его души! Ах! это ужасно, долг христианина…]
Из внутренних комнат отворилась дверь, и вошла одна из княжен племянниц графа, с угрюмым и холодным лицом и поразительно несоразмерною по ногам длинною талией.
Князь Василий обернулся к ней.
– Ну, что он?
– Всё то же. И как вы хотите, этот шум… – сказала княжна, оглядывая Анну Михайловну, как незнакомую.
– Ah, chere, je ne vous reconnaissais pas, [Ах, милая, я не узнала вас,] – с счастливою улыбкой сказала Анна Михайловна, легкою иноходью подходя к племяннице графа. – Je viens d"arriver et je suis a vous pour vous aider a soigner mon oncle . J`imagine, combien vous avez souffert, [Я приехала помогать вам ходить за дядюшкой. Воображаю, как вы настрадались,] – прибавила она, с участием закатывая глаза.
Княжна ничего не ответила, даже не улыбнулась и тотчас же вышла. Анна Михайловна сняла перчатки и в завоеванной позиции расположилась на кресле, пригласив князя Василья сесть подле себя.
– Борис! – сказала она сыну и улыбнулась, – я пройду к графу, к дяде, а ты поди к Пьеру, mon ami, покаместь, да не забудь передать ему приглашение от Ростовых. Они зовут его обедать. Я думаю, он не поедет? – обратилась она к князю.
– Напротив, – сказал князь, видимо сделавшийся не в духе. – Je serais tres content si vous me debarrassez de ce jeune homme… [Я был бы очень рад, если бы вы меня избавили от этого молодого человека…] Сидит тут. Граф ни разу не спросил про него.
Он пожал плечами. Официант повел молодого человека вниз и вверх по другой лестнице к Петру Кирилловичу.

Пьер так и не успел выбрать себе карьеры в Петербурге и, действительно, был выслан в Москву за буйство. История, которую рассказывали у графа Ростова, была справедлива. Пьер участвовал в связываньи квартального с медведем. Он приехал несколько дней тому назад и остановился, как всегда, в доме своего отца. Хотя он и предполагал, что история его уже известна в Москве, и что дамы, окружающие его отца, всегда недоброжелательные к нему, воспользуются этим случаем, чтобы раздражить графа, он всё таки в день приезда пошел на половину отца. Войдя в гостиную, обычное местопребывание княжен, он поздоровался с дамами, сидевшими за пяльцами и за книгой, которую вслух читала одна из них. Их было три. Старшая, чистоплотная, с длинною талией, строгая девица, та самая, которая выходила к Анне Михайловне, читала; младшие, обе румяные и хорошенькие, отличавшиеся друг от друга только тем, что у одной была родинка над губой, очень красившая ее, шили в пяльцах. Пьер был встречен как мертвец или зачумленный. Старшая княжна прервала чтение и молча посмотрела на него испуганными глазами; младшая, без родинки, приняла точно такое же выражение; самая меньшая, с родинкой, веселого и смешливого характера, нагнулась к пяльцам, чтобы скрыть улыбку, вызванную, вероятно, предстоящею сценой, забавность которой она предвидела. Она притянула вниз шерстинку и нагнулась, будто разбирая узоры и едва удерживаясь от смеха.

Этот процессор Intel представила в мае 1997 года. До своего официального появления он был известен под кодовым названием Klamath, и вокруг него в компьютерном мире ходило огромное количество слухов. pentium II, по существу, тот же процессор шестого поколения, что и pentium Pro, правда, в несколько улучшенном варианте. Кристалл процессора pentium II отображен на рис. 3.25.

Однако в физическом аспекте это действительно нечто новое. Процессор pentium II заключен в корпус с односторонним контактом (Single Edge Contact - SEC) и крупным Рис. 3.25. Процессор pentium II. Фотография публикуется с разрешения Intel Рис. 3.26. Плата процессора pentium II (внутри картриджа SEC). Фотография публикуется с разрешения Intel теплоотводным элементом. Устанавливается он на собственную небольшую плату, очень похожую на модуль памяти SIMM и содержащую кэш-память второго уровня (рис. 3.26); эта плата устанавливается в разъем типа Slot 1 на системной плате, который внешне очень похож на разъем адаптера. Рис. 3.27. Компоненты картриджа SECC Существует два типа картриджей процессоров, называемые SECC (Single Edge Contact Cartridge) и SECC2. Эти картриджи отображены на рис. 3.27 и 3.28 соответственно. Обратите внимание, что в картридже SECC2 меньше компонентов. В начале 1999 года Intel перешла на использование картриджей при производстве процессоров pentium П/Ш. Изготовить один из типов описанных картриджей дороже, чем процессор pentium Pro. Предлагаемые Intel процессоры pentium II работают на перечисленных ниже тактовых частотах.

Тип процессора/ Кратность тактовой Тактовая частота
быстродействие частоты системной платы, МГц
pentium II 233 3,5x 66
pentium II 266 4x 66
pentium II 300 4,5x 66
pentium II 333 5x 66
pentium II 350 3,5x 100
pentium II 400 4x 100
pentium II 450 4,5x 100
Ядро процессора pentium II имеет 7,5 млн транзисторов; при его производстве используется улучшенная архитектура Р6 компании Intel. Вначале все процессоры pentium II производились по 0,35-микронной технологии. А уже при изготовлении pentium II 333 МГц используется 0,25-микронная технология. Это позволяет уменьшить кристалл, увеличить тактовую частоту и снизить потребляемую мощность. При тактовой частоте 333 МГц эффективность процессора pentium II на 75–150% выше, чем pentium ММХ 233 МГц, а при проведении эталонных мультимедийных тестов приблизительно на 50% выше. На сегодня эти процессоры считаются довольно быстрыми. Приведенный выше Рис. 3.28. Компоненты картриджа SECC2 в этой главе индекс iCOMP 2.0 у pentium II 266 МГц вдвое выше, чем у оригинального процессора pentium 200 МГц. Если не учитывать скорость, то процессор pentium II можно рассматривать как комбинацию pentium Pro и технологии ММХ. У него такие же многопроцессорные возможности и точно такой же интегрированный кэш второго уровня, как у pentium Pro, а у ММХ заимствованы 57 новых мультимедийных команд. Кроме того, в pentium II объем внутренней кэш-памяти первого уровня вдвое выше, чем в pentium Pro (теперь он составляет не 16, а 32 Кбайт). Максимальная потребляемая процессором pentium II мощность и рабочее напряжение приведены ниже.
Основная тактовая Потребляемая Процесс (размер Напряжение, В
частота, МГц мощность, Вт структуры), микрон
450 27,1
0,25
2,0
400 24,3
0,25
2,0
350 21,5
0,25
2,0
333 23,7
0,25
2,0
300 43,0
0,35
2,8
266 38,2
0,35
2,8
233 34,8
0,35
2,8
Процессор pentium II 450 МГц потребляет меньшую мощность, чем его первоначальная версия 233 МГц. Это было достигнуто за счет уменьшения величины структуры до 0,25 микрон и снижения напряжения до 2,0 В. Как и в процессоре pentium Pro, в pentium II реализовано повышающее эффективность средство динамического выполнения. Основные особенности динамического выполнения следующие: множественное предсказание переходов, то ускоряет выполнение, прогнозируя поток программы через отдельные ветви; анализ потока данных, благодаря которому анализируются и переупорядочиваются команды программы; упреждающее выполнение, то «предугадывает» изменение счетчика команд и выполняет команды, результаты которых, вероятнее всего, вскоре понадобятся. Благодаря широкому использованию этих возможностей эффективность процессора pentium II значительно повышается. Таблица 3.14. Технические данные процессоров pentium II
Частота шины 66, 100 МГц
Кратность умножения частоты 3,5х, 4х, 4,5х, 5х
Тактовая частота 233, 266, 300, 333, 350, 400, 450 МГц
Объем встроенной кэш-памяти Первого уровня: 32 Кбайт (16 Кбайт для кода

и 16 Кбайт для данных); второго уровня: 512 Кбайт

(половинная тактовая частота процессора)
Разрядность внутренних регистров 32
Разрядность внешней шины данных 64
Разрядность шины адреса 36
Максимальная адресуемая память 64 Гбайт
Максимальная виртуальная память 64 Тбайт
Корпус 242-контактный с односторонним контактом (Single

Edge Contact Cartridge - SECC)
Размеры корпуса 12,82x6,28x1,64 см
Сопроцессор Встроенный
Снижение энергопотребления Система SMM (System Management Mode)
Как и в pentium Pro, в pentium II внедрена архитектура двойной независимой шины (Dual Independent Bus - DIB). Термин двойная независимая шина своим происхождением обязан двум независимым шинам в процессоре pentium II - шине кэш-памяти второго уровня и системной шине, по той происходит обмен данными между процессором и основной памятью. Pentium II может использовать обе шины одновременно, поэтому интенсивность обмена данными других устройств с pentium II может быть вдвое выше, чем с процессором, в котором использовалась архитектура одиночной шины. Архитектура двойной независимой шины позволяет повысить быстродействие кэш-памяти второго уровня процессора pentium II333 МГц в 2,5 раза. Причем с увеличением тактовой частоты процессоров pentium II возрастает и быстродействие кэш-памяти второго уровня. Кроме того, системная шина с конвейерной организацией позволяет параллельно выполнять два потока транзакций, а не один. Все эти улучшения архитектуры двойной независимой шины увеличивают ее пропускную способность почти в три раза по сравнению с пропускной способностью шины с одиночной архитектурой у обычного процессора Pentium. Общие технические данные процессоров pentium II приведены в табл. 3.14. Технические данные конкретных моделей pentium II приведены в табл. 3.15. Как видите, pentium II может адресовать до 64 Гбайт физической памяти. При его создании использовалась архитектура двойной независимой шины. Это значит, что процессор имеет две независимые шины: для доступа к кэш-памяти второго уровня и для доступа к основной памяти. Работают эти шины одновременно, значительно увеличивая проходящий через систему поток данных. Кэш-память первого уровня всегда работает на основной тактовой частоте процессора, потому что она установлена непосредственно на кристалле процессора. Кэш-память второго уровня в pentium II обычно работает на половине основной тактовой частоты процессора, что позволяет снизить стоимость Таблица 3.15. Технические данные процессора pentium II
Процессор pentium II ММХ (350, , 400 и 450 МГц)
Дата представления
15 апреля 1998 года
Тактовая частота
350 (100x3,5), 400 (100x4) и 450 (100x4,5) МГц

386, 440 и 483 (350, 400 и 450 МГц соответственно)
iCOMP 2.0

Количество транзисторов
7,5 млн (0,25-микронная технология) плюс 31 млн кэшпамяти второго уровня объемом 512 Кбайт
4 Гбайт
Рабочее напряжение
2,0 В
Тип разъема
Slot 2
Размер кристалла
Мобильный процессор pentium II (266, 300, 333 и 366 МГц)
Дата представления
25 января 1999 года
Тактовая частота
266, 300, 333 и 366 МГц
Количество транзисторов
27,4 млн (0,25-микронная технология)
Размеры
31x35 мм
Рабочее напряжение
1,6 В
Выделяемое тепло
366 Мгц - 9,5 Вт, 333 МГц - 8,6 Вт, 300 МГц - 7,7 Вт, 266 МГц - 7,0 Вт
Процессор pentium II ММХ (333 МГц)
Дата представления
7 мая 1997 года
Тактовая частота
333 МГц (66 МГцх 5)
Производительность по тесту
366
iCOMP 2.0

Количество транзисторов
7,5 млн (0,35-микронная технология) плюс 31 млн кэшпамяти второго уровня объемом 512 Кбайт
Кэшируемая оперативная память 512 Мбайт
Рабочее напряжение
2,0 В
Тип разъема
Slot 1
Размер кристалла
Квадрат со стороной 10,2 мм
Процессор pentium II ММХ (300 МГц)
Дата представления
7 мая 1997 года
Тактовая частота
300МГц(66МГцх4,5)
Производительность по тесту
332
iCOMP 2.0

Количество транзисторов
7,5 млн (0,35-микронная технология) плюс 31 млн кэшпамяти второго уровня объемом 512 Кбайт
Кэшируемая оперативная память 512 Мбайт
Тип разъема
Slot 1
Размер кристалла
Процессор pentium II ММХ (266 МГц)
Дата представления 7 мая 1997 года
Тактовая частота 266 МГц (66 МГц х 4)
Производительность по тесту 303
iCOMP 2.0
Количество транзисторов

Кэшируемая оперативная память 512 Мбайт
Тип разъема Slot 1
Размер кристалла Квадрат со стороной 14,2 мм
Процессор pentium II ММХ (233 МГц)
Дата представления 7 мая 1997 года
Тактовая частота 233 МГц (66 МГцх3,5)
Производительность по индексу 267
iCOMP 2.0
Количество транзисторов 7,5 млн (0,35-микронная технология) плюс 31 млн кэш-

памяти второго уровня объемом 512 Кбайт
Кэшируемая оперативная память 512 Мбайт
Тип разъема Slot 1
Размер кристалла Квадрат со стороной 14,2 мм
микросхемы кэша. к примеру, в pentium II 333 МГц кэш-память первого уровня работает на тактовой частоте 333 МГц, в то время как кэш-память второго уровня - на тактовой частоте 167 МГц. Хотя кэш-память второго уровня работает не на полной тактовой частоте, как это было в pentium Pro, ее быстродействие значительно выше по сравнению с кэш-памятью на системной плате, работающей на тактовой частоте 66 МГц (это частота большинства системных плат с гнездом типа Socket 7 для Pentium). Как утверждает Intel, пропускная способность новой двойной шины втрое выше, чем у обычной. Теперь, перенеся кэш-память из внутреннего корпуса процессора и используя внешнюю микросхему, установленную в одном корпусе, Intel может обходиться более дешевыми микросхемами кэш-памяти и еще больше увеличивать тактовую частоту процессора. Тактовая частота pentium Pro была ограничена 200 МГц, так как было трудно найти доступную кэш-память с более высокой частотой. А поскольку тактовая частота кэш-памяти составляет половину тактовой частоты процессора, pentium II может работать на частоте 400 МГц, что позволяет использовать микросхемы кэш-памяти с номинальной тактовой частотой всего лишь 200 МГц. Чтобы компенсировать половинную тактовую частоту кэш-памяти в Pentium II, Intel удвоила объем кэш-памяти второго уровня (в pentium Pro стандартный объем равен 256 Кбайт, а в pentium II - 512 Кбайт). Обратите внимание, что дескрипторы ОЗУ, имеющиеся в кэш-памяти второго уровня, дозапускают кэширование оперативной памяти объемом до 512 Мбайт в процессорах pentium II - от 233 до 333 МГц. В процессорах на 350, 400 МГц и выше дескрипторы ОЗУ расширены, поэтому в таких моделях разрешается кэшировать до 4 Гбайт оперативной памяти. Это очень важно, если вы планируете когда-либо установить память емкостью более 512 Мбайт. В этом случае вам определенно нужен процессор на 350 МГц или выше, иначе снижается эффективность памяти. Шина инфраструктуры pentium II может поддерживать один либо два процессора, при этом не требуются дополнительные микросхемы. Это дает возможность снизить стоимость симметричной многопроцессорной обработки данных, не добавляя дополнительных внешних микросхем, что позволит значительно увеличить эффективность многозадачных операционных систем и многопоточных приложений. В будущем наборы микросхем системной логики смогут организовать работу четырех или более процессоров pentium II в единой многопроцессорной системе, прежде всего для использования в качестве файл-сервера. Имеются версии pentium II с кодами коррекции ошибок (Error Correction Code - ЕСС) на шине кэша второго уровня (L2). Они разработаны специально для серверов или других систем, выполняющих жизненно важные задачи, в которых большую роль играет надежность и целостность данных. Во всех процессорах pentium II сигналы запроса и выдачи адреса на шину защищены контролем четности и, кроме того, предусмотрен механизм повторения для повышения целостности и надежности данных. Для установки pentium II в систему существует специальное крепление. Процессор устанавливается в Slot 1 на системной плате так, чтобы быть защищенным от повреждений в результате вибраций и толчков. Крепления разрабатываются изготовителями системных плат. (к примеру, такие системные платы, как Intel Boxed AL440FX и DK440LX, имеют крепления и другие важные компоненты для сборки инфраструктуры.) Pentium II генерирует большое количество тепла, то необходимо рассеивать. Для этого на процессоре устанавливается теплоотвод (радиатор),иногда можно использовать активный теплоотвод (вентилятор). В отличие от активных теплоотводов, устанавливаемых ранее для боксированных процессоров Intel, вентиляторы pentium II получают питание от разъема с тремя контактами на системной плате. Для электрического подключения вентиляторов в большинстве системных плат предусмотрено несколько соединителей. Для теплоотвода на системной плате имеются специальные монтажные отверстия. Обычно пластмассовая опорная стойка вставляется в отверстия теплоотвода рядом с центральным процессором (перед установкой картриджа центрального процессора с теплоот-водом). Большинство теплоотводов имеют два компонента: вентилятор в пластмассовом кожухе и металлический радиатор. Радиатор присоединяется к теплоотводящей пластине процессора и не снимается, тогда как вентилятор можно снять и заменить в случае необходимости. На рис. 3.29 отображен корпус SEC с вентилятором, проводами, по которым подводится питание, креплениями, разъемами и отверстиями для крепления к системной плате. В приведенных ниже таблицах указаны технические характеристики различных версий pentium П. Чтобы вы могли идентифицировать свой процессор pentium II, найдите номер спецификации на корпусе SEC. Он находится в изменяемой части метки на верхней стороне модуля процессора. Размещение маркировки отображено на рис. 3.30. По номеру спецификации (фактически это алфавитно-цифровой код) можно точно установить тип процессора (табл. 3.16). к примеру, номер спецификации SL2KA идентифицирует процессор как pentium II 333 МГц (тактовая частота системной шины 66 МГц) с кэш-памятью второго уровня (L2), в той применяются коды с исправлением ошибок. В этой же таблице указано, что для данного процессора требуется напряжение питания только 2,0 В. Кроме того, указан номер изменения, и, воспользовавшись изданным Intel руководством pentium II Specification Update Manual, вы можете точно узнать, какие изменения были внесены. Рис. 3.30. Упаковка процессора pentium II: корпус с односторонним контактом
SL37G dBO 0652h 400/100 512 ЕСС SECC2 OLGA 1,2,4
SL2WB dBO 0652h 450/100 512 ЕСС SECC 3.00 1 2, 5
SL37H dBO 0652h 450/100 512 ЕСС SECC2 OLGA 1 2
SL2KE TdBO 1632h 333/66 512 ЕСС PGA 2 4
SL2W7 dBO 0652h 266/66 512 ЕСС SECC 2.00 2 5
SL2W8 dBO 0652h 300/66 512 ЕСС SECC 3.00 2 5
SL2TV dBO 0652h 333/66 512 ЕСС SECC 3.00 2 5
SL2U3 dBO 0652h 350/100 512 ЕСС SECC 3.00 2 5
SL2U4 dBO 0652h 350/100 512 ЕСС SECC 3.00 2 5
SL2U5 dBO 0652h 400/100 512 ЕСС SECC 3.00 2 5
SL2U6 dBO 0652h 400/100 512 ЕСС SECC 3.00 2 5
SL2U7 dBO 0652h 450/100 512 ЕСС SECC 3.00 2 5
SL356 dBO 0652h 350/100 512 ЕСС SECC2 PLGA 2 5
SL357 dBO 0652h 400/100 512 ЕСС SECC2 OLGA 2 5
SL358 dBO 0652h 450/100 512 ЕСС SECC2 OLGA 2 5
SL37F dBO 0652h 350/100 512 ЕСС SECC2 PLGA 1 2, 5
SL3FN dBO 0652h 350/100 512 ЕСС SECC2 OLGA 2 5
SL3EE dBO 0652h 400/100 512 ЕСС SECC2 PLGA 2 5
SL3F9 dBO 0652h 400/100 512 ЕСС SECC2 PLGA 1 2
SL38M dBl 0653h 350/100 512 ЕСС SECC 3.00 1 2, 5
SL38N dBl 0653h 400/100 512 ЕСС SECC 3.00 1 2, 5
SL36U dBl 0653h 350/100 512 ЕСС SECC 3.00 2 5
SL38Z dBl 0653h 400/100 512 ЕСС SECC 3.00 2 5
SL3D5 dBl 0653h 400/100 512 ЕСС SECC2 OLGA 1 2
SECC - Single Edge Contact Cartridge. SECC2 - Single Edge Contact Cartridge, версия 2. PLGA - Plastic Land Grid Array. OLGA - Organic Land Grid Array. ECC - Error Correcting Code. 1 Процессор pentium II с установленным вентилятором («боксированный «). 2 Эти процессоры имеют расширенную кэш-память второго уровня, что позволяет кэши-ровать до 4 Гбайт основной памяти. Все остальные процессоры pentium II позволяют кэшировать 512 Мбайт. 3 Эти «боксированные « процессоры поддерживают коды коррекции ошибок для кэш-памяти второго уровня. 4 «Боксированный « процессор pentium II OverDrive с установленным вентилятором предназначен для обновления систем на базе процессоров Pentium Pro (Socket 8). 5 Эти процессоры могут работать только на фиксированной частоте, установленной производителем. Для их «разгона « необходимо повышать частоту системной шины. В настоящее время существует две модификации корпуса SECC2. Более старая модификация PLGA использовалась в корпусах SECC. Сейчас она заменяется модификацией OLGA. В этой модификации уменьшены размеры процессора, она проще в производстве и обеспечивает лучший отвод тепла от процессора - теплоотводные элементы монтируются непосредственно к микросхемам. На рис. 3.31 отображена сторона корпуса SECC2 (модификации PLGA и OLGA), к той монтируется теплоотводный элемент. Системные платы pentium II имеют преобразователь напряжения, который служит для подачи нужного напряжения на центральный процессор. Для разных моделей pentium II требуются различные напряжения, и поэтому преобразователь рекомендуется установить так, чтобы обеспечить этому конкретному процессору подачу необходимого напряжения. На платах для pentium Pro, в отличие от плат для более старых моделей Pentium, нет никаких переходных устройств или переключателей для установки напряжения: эта процедура выполняется автоматически с помощью имеющихся на корпусе процессора контактов идентификации напряжения (VID). В табл. 3.17 приведены значения устанавливаемого напряжения. Рис. 3.31. Корпус SECC2, модификации PLGA и OLGA
Таблица 3.17. Устанавливаемое напряжение для pentium II

Вся информация собрана из открытых источников. При испльзовании материалов, размещайте ссылку на источник.

VID4 VID3 VID2 VTD1 VTD0 Напряжение, В
0
1 1 1 1,30
0
1 1 0 1,35
0
1 0 1 1,40
0
1 0 0 1,45
0
0 1 1 1,50
0
0 1 0 1,55
0
0 0 1 1,60
0
0 0 0 1,65
0 0 1 1 1 1,70
0 0 1 1 0 1,75
0 0 1 0 1 1,80
0 0 1 0 0 1,85
0 0 0 1 1 1,90
0 0 0 1 0 1,95
0 0 0 0 1 2,00
0 0 0 0 0 2,05


1 1 1 Процессор не установлен


1 1 0 2,1


1 0 1 2,2


1 0 0 2,3


0 1 1 2,4


0 1 0 2,5


0 0 1 2,6


0 0 0 2,7

0 1 1 1 2,8

0 1 1 0 2,9

0 1 0 1 3,0

0 1 0 0 3,1

0 0 1 1 3,2

0 0 1 0 3,3

0

Внутренняя структура (микроархитектура) процессора Pentuim 4 значительно отличается от микроархитектуры предшествующих моделей Pentium II, Pentium III, Celeron. Наряду с микроархитектурой существенно изменилась и архитектура систем, реализуемых на его основе. Новая системная архитектура, использующая процессор Pentuim 4 и набор специализированных микросхем Chipset 850, выпускаемых компанией Intel, обеспечивают значительное повышение производительности - от 23 до 87% при решении различного класса задач. В 2001 году планируется быстрый рост производства Pentium 4 и повышение его тактовой частоты до 2 ГГц. В 2002 году объём выпуска Pentium 4 превысит Pentium III, и этот процессор станет основной продукцией компании Intel.

Развитие архитектуры IA-32 в семействе Pentium

Общая архитектура процессора определяет комплекс средств, предоставляемых пользователю для решения различных задач. Эта архитектура задаёт базовую систему команд процессора и реализуемых способов адресации, набор программно-доступных регистров (регистровая модель), возможные режимы работы процессора и обращения к памяти и внешним устройствам (организация памяти и реализация обмена по системной шине), средства обработки прерываний и исключений.

В процессоре Pentium 4 реализуется архитектура IA-32 (Intel Architеcture-32), общая для всех 32-разрядных микропроцессоров Intel, начиная с i386. В табл. 1 приведены основные модели процессоров, в которых используется эта архитектура, и некоторые их характеристики. Отметим, что модели Pentium II Xeon и Pentium III Xeon ориентированы на работу в высокопроизводительных мультипроцессорных системах (серверах, рабочих станциях). Для этих же приложений планируется выпуск в 2001 году модификации процессора Pentium 4 с поддержкой мультипроцессорного режима работы (название проекта - Foster).

Таблица 1. Некоторые характеристики процессоров архитектуры IA-32

Модель, начало выпуска Число транзисторов Тактовая частота, МГц Объем внутренней кэш-памяти
i386, октябрь 1985 г. 275 тыс. до 40 Нет
i486, апрель 1989 г. 1,2 млн. до 100 8 Кбайт - команды
8 Кбайт - данные
Pentium, март 1993 г. 3,1 млн. до 200 8 Кбайт - команды
8 Кбайт - данные
Pentium Pro, ноябрь 1995 г. 5,5 млн. до 200 8 Кбайт - команды
8 Кбайт - данные
Pentium MMX,
январь 1997 г.
4,5 млн. до 233 8 Кбайт - команды
8 Кбайт - данные
Pentium II,
май 1997 г.
(Xeon, июнь 1998 г.)
7,5 млн. до 450 16 Кбайт - команды
16 Кбайт - данные
Celeron,
аперль 1998 г.
до 750 128 Кбайт - общий
Pentium III,
февраль 1999 г.
(Xeon, март 1999 г.)
8,5 млн. до 1000

(до 700)

16 Кбайт - команды
16 Кбайт - данные
Pentium 4,
ноябрь 2000 г.
(Foster, 2001 г.)
42 млн. до 1500 256 Кбайт - общтй
12 К - микрокоманлы
8 Кбайт - данные

История архитектуры IA-32 насчитывает уже более 15 лет, и её основные черты достаточно полно описаны в ряде монографий (например, в ). Поэтому ограничимся их кратким обзором.

В процессе развития IA-32 производилось расширение возможностей обработки данных, представленных в различных форматах (рис. 1). Процессоры i386 выполняли обработку только целочисленных операндов. Для обработки чисел с “плавающей точкой” использовался внешний сопроцессор i387, подключаемый к микропроцессору. В состав процессоров i486 и последующих моделей Pentium введён специальный блок FPU (Floating-Point Unit ), выполняющий операции над числами с “плавающей точкой”. В процессорах Pentium MMX была впервые реализована групповая обработка нескольких целочисленных операндов разрядностью 1, 2, 4 или 8 байт с помощью одной команды. Такая обработка обеспечивается введением дополнительного блока MMX (Milti-Media Extension - Мультимедийное Расширение). Название блока отражает его направленность на обработку видео- и аудиоданных, когда одновременное выполнение одной операции над несколькими операндами позволяет существенно повысить скорость обработки изображений и звуковых сигналов. Начиная с модели Pentium III, в процессоры вводится блок SSE (Streaming SIMD Extension - Потоковое SIMD-расширение) для групповой обработки чисел с “плавающей точкой”.

Рис. 1. Эволюция архитектуры IA-32

Таким образом, если первые модели процессоров Pentium выполняли только пооперандную обработку данных по принципу “Одна команда – Одни данные” (SISD - Single Instruction – Single Data ), то, начиная с процессора Pentium MMX, реализуется также их групповая обработка по принципу “Одна команда – Много данных” (SIMD - Single Instruction – Multiple Data ).

Соответственно, расширяется и набор регистров процессора, используемых для промежуточного хранения данных (рис. 2). Кроме 32-разрядных регистров для хранения целочисленных операндов, процессоры Pentium содержат 80-разрядные регистры, которые обслуживают блоки FPU и MMX. При работе FPU регистры ST0-ST7 образуют кольцевой стек, в котором хранятся числа с “плавающей точкой”, представленные в формате с расширенной точностью (80 разрядов). При реализации MMX-операций они используются как 64-разрядные регистры MM0-MM7, где могут храниться несколько операндов (8 8-разрядных, 4 16-разрядных, 2 32-разрядных или один 64-разрядный), над которыми одновременно выполняется поступившая в процессор команда (арифметическая, логическая, сдвиг и ряд других).

Рис. 2. Регистры хранения данных в процессорах Pentium

Блок SSE-2, введённый в состав процессора Pentium 4, значительно расширяет возможности обработки нескольких операндов по принципу SIMD, по сравнению с блоком SSE в модели Pentium III. Этот блок реализует 144 новые команды, обеспечивающих одновременное выполнение операций над несколькими операндами, которые раcполагаются в памяти и в 128-разрядных регистрах XMM0-XMM7. В регистрах могут храниться и одновременно обрабатываться 2 числа с “плавающей точкой” в формате двойной точности (64 разряда) или 4 числа в формате одинарной точности (32 разряда). Этот блок может также одновременно обрабатывать целочисленные операнды: 16 8-разрядных, 8 16-разрядных, 4 32-разрядных или 2 64-разрядных. В результате производительность процессора Pentium 4 при выполнении таких операций оказывается вдвое выше, чем Pentium III.

Операции SSE-2 позволяют существенно повысить эффективность процессора при реализации трёхмерной графики и Интернет-приложений, обеспечении сжатия и кодирования аудио- и видеоданных и в ряде других применений.

Введение большой группы команд SSE-2 является основной особенностью реализованного в Pentium 4 варианта архитектуры IA-32. Что касается базового набора команд и используемых способов адресации операндов, то они практически полностью совпадают с набором команд и способов адресации в предыдущих моделях Pentium. Процессор обеспечивает реальный и защищённый режимы работы, реализует сегментную и страничную организации памяти. Таким образом пользователь имеет дело с хорошо знакомым набором регистров и способов адресации, может работать с базовой системой команд и известными вариантами реализации прерываний и исключений, которые характерны для всех моделей семейства Pentium .

Микроархитектура процессоров Pentium 4

Основные особенности процессора Pentium 4 связаны с его микроархитектурой. Микроархитектура процессора определяет реализацию его внутренней структуры, принципы выполнения поступающих команд, способы размещения и обработки данных. Как анонсировала компания Intel, новая микроархитектура процессора Pentium 4, получившая название NetBurst (пакетно-сетевая), ориентирована на эффективную работу с Интернет-приложениями. Необходимо отметить, что в микроархитектуре NetBurst реализованы многие принципы, использованные в предыдущей модели Pentium III (микроархитектура P6 ). Характерными чертами этой микроархитектуры являются:

  • гарвардская структура с разделением потоков команд и данных;
  • суперскалярная архитектура, обеспечивающая одновременное выполнение нескольких команд в параллельно работающих исполнительных устройствах;
  • динамическое изменение последовательности команд (выполнение команд с опережением - спекулятивное выполнение);
  • конвейерное исполнение команд;
  • предсказание направления ветвлений.

Практическая реализация данных принципов в структуре процессора Pentium 4 имеет ряд существенных особенностей (рис. 3).

Рис. 3. Общая структура Pentium 4

Гарвардская внутренняя структура реализуется путём разделения потоков команд и данных, поступающих от системной шины через блок внешнего интерфейса и размещённую на кристалле процессора общую кэш-память 2-го уровня (L2) ёмкостью 256 Кбайт. Такое размещение позволяет сократить время выборки команд и данных по сравнению с Pentuim III, где эта кэш-память располагается на отдельном кристалле, смонтированном в общем корпусе (картридже) с процессором.

Блок внешнего интерфейса реализует обмен пpоцессоpа с системной шиной, к которой подключается память, контроллеры ввода/вывода и другие активные устройства системы. Обмен по системной шине осуществляется с помощью 64-разрядной двунаправленной шины данных, 41-разрядной шины адреса (33 адресных линии А35-3 и 8 линий выбора байтов BE7-0#), обеспечивающей адресацию до 64 Гбайт внешней памяти.

Дешифратор команд работает вместе с памятью микропрограмм, формируя последовательность микрокоманд, обеспечивающих выполнение поступивших команд. Декодированные команды загружаются в кэш-память микрокоманд, откуда они выбираются для исполнения. Кэш-память может хранить до 12000 микрокоманд. После её заполнения практически любая команда будет храниться в ней в декодированом виде. Поэтому при поступлении очередной команды блок трассировки выбирает из этой кэш-памяти необходимые микрокоманды, обеспечивающие её выполнение. Если в потоке команд оказывается команда условного перехода (ветвления программы), то включается механизм предсказания ветвления, который формирует адрес следующей выбираемой команды до того, как будет определено условие выполнения перехода.

После формирования потоков микрокоманд производится выделение регистров, необходимых для выполнения декодированных команд. Эта процедура реализуется блоком распределения регистров, который выделяет для каждого указанного в команде логического регистра (регистра целочисленных операндов EAX, ECX и других, регистра операндов с плавающей точкой ST0-ST7 или регистра блоков MMX, SSE, рис. 2) один из 128 физических регистров, входящих в состав блоков регистров замещения (БРЗ).

Эта процедура позволяет выполнять команды, использующие одни и те же логические регистры, одновременно или с изменением их последовательности.

Выбранные микрокоманды размещаются в очереди микрокоманд. В ней содержатся микрокоманды, реализующие выполнение 126 поступивших и декодированных команд, которые затем направляются в исполнительные устройства по мере готовности операндов. Отметим, что в процессорах Pentium III в очереди находятся микрокоманды для 40 поступивших команд. Значительное увеличение числа команд, стоящих в очереди, позволяет более эффективно организовать поток их исполнения, изменяя последовательность выполнения команд и выделяя команды, которые могут выполняться параллельно. Эти функции реализует блок распределения микрокоманд. Он выбирает микрокоманды из очереди не в порядке их поступления, а по мере готовности соответствующих операндов и исполнительных устройств. В результате команды, поступившие позже, могут быть выполнены до ранее выбранных команд. При этом реализуется одновременное выполнение нескольких микрокоманд (команд) в параллельно работающих исполнительных устройствах. Таким образом естественный порядок следования команд нарушается, чтобы обеспечить более полную загрузку параллельно включенных исполнительных устройств и повысить производительность процессора.

Суперскалярная архитектура реализуется путём организации исполнительного ядра процессора в виде ряда параллельно работающих блоков. Арифметико-логические блоки ALU производят обработку целочисленных операндов, которые поступают из заданных регистров БРЗ. В эти же регистры заносится и результат операции. При этом проверяются также условия ветвления для команд условных переходов и выдаются сигналы перезагрузки конвейера команд в случае неправильно предсказанного ветвления. Исполнительное ядро работает с повышенной скоростью выполнения операций. Например, микрокоманда сложения целочисленных операндов при тактовой частоте процессора 1,5 МГц выполняется всего за 0,36 нс.

Адреса операндов, выбираемых из памяти, вычисляются блоком формирования адреса (БФА), который реализует интерфейс с кэш-памятью данных 1-го уровня (L1) ёмкостью 8 Кбайт. В соответствии с заданными в декодированных командах способами адресации формируются 48 адресов для загрузки операндов из памяти в регистр БРЗ и 24 адреса для записи из регистра в память (в Pentium III формируются 16 адресов для загрузки регистров и 12 адресов для записи в память). При этом БФА формирует адреса операндов для команд, которые ещё не поступили на выполнение. При обращении к памяти БФА одновременно выдаёт адреса двух операндов: один для загрузки операнда в заданный регистр БРЗ, второй - для пересылки результата из БРЗ в память. Таким образом реализуется процедура предварительного чтения данных для последующей их обработки в исполнительных блоках, которая называется спекулятивной выборкой.

Аналогичным образом организуется параллельная работа блоков SSE, FPU, MMX, которые используют отдельный набор регистров и блок формирования адресов операндов.

При выборке операнда из памяти производится обращение к кэш-памяти данных (L1), которая имеет отдельные порты для чтения и записи. За один такт производится выборка операндов для двух команд. Время обращения к этой кэш-памяти составляет 1,42 нс при тактовой частоте 1,5 ГГц, что в 2,1 раза меньше, чем при обращении к кэш-памяти данных в процессоре Pentium III, работающем на частоте 1,0 ГГц.

При формировании адресов обеспечивается обращение к заданному сегменту памяти. Каждый сегмент может делиться на страницы, размещаемые в различных местах адресного пространства. Блоки трансляции адреса обеспечивают формирование физических адресов команд и данных при использовании страничной организации памяти. Для сокращения времени трансляции используется внутренняя буферная память, которая хранит базовые адреса наиболее часто используемых страниц.

В Pentuim 4 используется гиперконвейерная технология выполнения команд, при которой число ступеней конвейера достигает 20 (в Pentium - 5 ступеней, в Pentium III - 11). Таким образом одновременно в процессе выполнения может находиться до 20 команд, находящихся на разных стадиях (ступенях) их реализации.

Эффективность конвейера резко снижается из-за необходимости его перезагрузки при выполнении условных ветвлений, когда требуется произвести очистку всех предыдущих ступеней и выбрать команду из другой ветви программы. Чтобы сократить потери времени, связанные с перезагрузкой конвейера, используется блок предсказания ветвлений. Его основной частью является ассоциативная память, называемая буфером адресов ветвлений (BTB - Branch Target Buffer), в которой хранятся 4092 адреса ранее выполненных переходов. Отметим, что в BTB процессора Pentium III хранятся адреса только 512 переходов. Кроме того, BTB содержит биты, хранящие предысторию ветвления, которые указывают, выполнялся ли переход при предыдущих выборках данной команды. При поступлении очередной команды условного перехода указанный в ней адрес сравнивается с содержимым BTB. Если этот адрес не содержится в BTB, то есть ранее не производились переходы по данному адресу, то предсказывается отсутствие ветвления. В этом случае продолжается выборка и декодирование команд, следующих за командой перехода. При совпадении указанного в команде адреса перехода с каким-либо из адресов, хранящихся в BTB, производится анализ предыстории. В процессе анализа определяется чаще всего реализуемое направление ветвления, а также выявляются чередующиеся переходы. Если предсказывается выполнение ветвления, то выбирается и загружается в конвейер команда, размещённая по предсказанному адресу. Усовершенствованный блок предсказания ветвления, используемый в Pentuim 4, обеспечивает 90-% вероятность правильного предсказания. Таким образом резко уменьшается число перезагрузок конвейера при неправильном предсказании ветвления.

Реализация микроархитектуры

Реализованное в Pentium 4 значительное изменение микроархитектуры и повышение производительности потребовали введения дополнительных аппаратных средств. На кристалле процессора располагаются 42 млн. транзисторов (Pentium III содержал 8,5 млн. транзисторов без учёта кэш-памяти 2-го уровня, размещённой на отдельном кристалле). В настоящее время для изготовления Pentium 4 используется КМОП-технология с разрешающей способностью 0,18 мкм. Выпускаемые модели Pentium 4 имеют максимальные тактовые частоты 1,4 и 1,5 ГГц и размещаются в 423-выводных корпусах типа PPGA (Plastic Pin Grid Array). В 2001 году компания Intel планирует переход к 0,13-мкм технологии изготовления с использованием 6-слойной системы медных соединений. При этом будет обеспечено повышение тактовой частоты процессоров Pentium 4 до 2 ГГц и выше.

Архитектура систем на базе Pentium 4

Практическая реализация потенциальных возможностей процессора Pentium 4 обеспечивается при использовании набора специализированных микросхем, необходимых для построения на его основе цифровых систем различного назначения. Для реализации систем на базе Pentium 4 компания Intel выпускает набор микросхем Chipset 850, в который входят:

  • контроллер-концентратор памяти MCH (Memory Controller Hub) типа Intel 82850;
  • контроллер-концентратор для устройств ввода/вывода ICH2 (I/O Controller Hub) типа Intel 82801BA;
  • контроллер микрокода FWH (FirmWare Hub) типа Intel 82802AB.

Типовая архитектура систем, реализованных на базе процессора Pentium 4 с использованием набора Chipset 850, показана на рис. 4. Основной особенностью этой архитектуры является использование новой системной шины FSB, обеспечивающей обмен со скоростью 3,2 Гбайт/c, что соответствует частоте передачи данных 400 МГц. Такая скорость реализуется путём применения нового типа сверхбыстродействующей двухканальной памяти RDRAM и контроллера-концентратора MCH, обеспечивающего 4 канала обмена с памятью этого типа.

Рис. 4. Типовая архитектура систем на базе Pentium 4

Контроллер MCH выполняет обмен с оперативной памятью типа Direct RAMBUS ёмкостью от 128 Мбайт (минимально допустимый объём) до 2 Гбайт с помощью сдвоенных каналов. Память реализуется на основе микросхем быстродействующей двухканальной RDRAM-памяти типа PC800 или PC600, выпускаемых компанией RAMBUS. Таким образом общий доступ к оперативной памяти осуществляется с использованием четырёх каналов обмена. При тактовой частоте канала 100 МГц обеспечивается общая частота обмена, эквивалентная 400 МГц, что в 3 раза выше, чем для наиболее быстродействующих современных системных плат, работающих на частоте 133 МГц.

При использовании в системах микросхем памяти типа RDRAM могут возникнуть проблемы, которые связаны с их высокой стоимостью и определёнными сложностями их поставки. Поэтому в настоящее время разрабатываются варианты применения других типов быстродействующих микросхем динамической памяти, выпускаемых компаниями NEC, Toshiba, Samsung, Hyndai, Infineon.

К контроллеру MCH подключается также универсальный разъём AGP4X, используемый для связи с графическим адаптером при скорости передачи данных более 1 Гбайт/с.

Контроллер ICH2 служит для подключения различных внешних устройств с использованием интерфейса ULTRA ATA/66/100. Этот интерфейс реализует обмен с жёстким диском со скоростью 66 или 100 Мбайт/c. ICH2 также обеспечивает прямой доступ внешних устройств к памяти со скоростью 33 Мбайт/с при помощи интерфейса ULTRA DMA/33. Контроллер служит для подключения последовательных портов с шиной USB, связи с локальной сетью Ethernet и параллельного обмена по шине PCI. Обеспечивается возможность реализации каналов для передачи аудиоданных.

Для создания систем на базе Pentim 4 компания Intel выпускает системные (“материнские”) платы типа D850GB. На плате размером 30,5ґ24,4 см2 монтируется микропроцессор и другие необходимые микросхемы, имеются 4 разъёма для включения RIMM-модулей памяти RDRAM. На плате размещаются также флэш-память ёмкостью 4 Мбит, хранящая систему ввода/вывода BIOS, 5 слотов шины PCI и 2 контроллера последовательной шины USB, обслуживающих 4 USB-порта. Кроме того, имеются порты для подключения клавиатуры и мыши, 2 интерфейса для подключения жёстких дисков и один для гибких дисков, один последовательный (COM) и один параллельный (LPT) порты.

Ведущие производители персональных компьютеров: Compaq, Dell, IBM, Hewlett-Packard, Acer, Siemens, Fujitsu, Toshiba, NEC и ряд других - начали поставку новых моделей компьютеров на основе процессоров Pentium 4. Предполагается, что средняя стоимость этих компьютеров в конце I полугодия 2001 года снизится до уровня 1600 долларов.

Области применения и реализуемое повышение производительности

Основной областью применения процессора Pentium 4 являются высокопроизводительные настольные персональные компьютеры (desktop PC). Процессор Pentium 4 не поддерживает реализацию мультипроцессорных систем, которая обеспечивается процессорами Pentium III Xeon. В 2001 году компания Intel планирует начать производство процессора Foster, который представляет собой модификацию Pentium 4, предназначенную для работы в мультипроцессорных системах. Процессор Foster будет использоваться в серверах и рабочих станциях.

Процессоры, которые будут выпускаться компанией Intel в 2001 году, ориентированы на области применения, перечисленные в табл. 2.

Таблица 2. Области применения перспективных процессоров фирмы INTEL

Новые 64-разрядные процессоры Itanium, архитектура которых принципиально отличается от архитектуры IA-32, используемой в семействе Pentium, будут применяться в наиболее высокопроизводительных серверах и рабочих станциях. В сфере персональных компьютеров процессоры Pentium 4 будут постепенно вытеснять Pentium III. Процессор Foster будет заменять Pentium III Xeon в серверах и рабочих станциях средней производительности. Процессоры Celeron сохранят свои доминирующие позиции в персональных компьютерах для массового потребителя.

Основным преимуществом процессора Pentium 4, по сравнению с предыдущей моделью Pentium III, является существенное повышение производительности при реализации различных приложений. В табл. 3 даны результаты тестовых испытаний производительности компьютеров на основе Pentium 4 (тактовая частота 1,5 ГГц, частота обмена по системной шине 400 МГц) и Pentium III (тактовая частота 1,0 ГГц, частота обмена по системной шине 133 МГц). Приведённые данные содержались в материалах, представленных компанией Intel на презентации процессора Pentium 4 в Москве, в ноябре 2000 года. В табл. 3 указаны программы, с помощью которых производилась сравнительная оценка производительности для различных приложений.

Таблица 3. Результаты сравнительных испытаний процессоров Pentium III и Pentium 4

Вид приложения Повышение производительности
Обработка целых чисел (SPECint2000) 23%
Обработка чисел с плавающей запятой (SPECfp2000) 79%
Кодирование аудиосигналов (eJay МРЗ Plus 1.3) 25%
Работа в сети Интернет (WebMark2001) 23%
Распознавание речи (Dragon Naturally Speaking, preffered 4.0) 27%
Кодирование видеопотоков
(Media Encjder 7.0)
(Video 2000 MPEG-2)

45%
26%
Обработка видеоматериалов
(ULead VideoStudio 4.0)
(Adobe Premier 5.1 c LSX-MPEG)

45%
26%
Трехмерные игры
(Quake III Arena Demo2)
44%
Трехмерная графика (3D WinBench 2000) 32%

Приведённые данные показывают, что наибольший выигрыш обеспечивается при использовании Pentium 4 для обработки видеоданных, реализации трёхмерной графики и выполнении операций над числами с “плавающей точкой”.

Литература

  1. Шагурин И.И. Pentium 4 - новая ступень развития микропроцессорной техники // Chip News. - 2000. - № 9. - С. 18–20 .
  2. Шагурин И.И., Бердышев Е.М. Процессоры семейства P6 - Pentium II, Pentium III, Celeron и другие. Архитектура, программирование, интерфейс. - М.: Горячая линия – Телеком. - 2000. - 248 с.

Основные принципы разгона процессоров Pentium II/III

К сожалению, разгон процессоров Intel Pentium II и Intel Pentium III невозможно выполнить с помощью изменения множителя, связывающего внешнюю и внутреннюю частоты. Фирма Intel разработала ряд методов борьбы с разгоном своих процессоров. В результате множитель зафиксирован. Таким образом фирма защищает свои процессоры от подделки. Кроме того, фиксацией множителя фирма Intel оберегает рынок своих изделий, не позволяя более дешевым, разогнанным процессорам создавать конкуренцию более дорогим вариантам с высокими внутренними частотами.

Процессоры, начиная уже с Pentium MMX-166, как правило, не позволяют увеличивать внутреннюю частоту путем изменения множителя. Хотя, надо признать, что существуют немногочисленные процессоры некоторых серий, допускающие такую возможность. Однако это крайне редко встречающиеся исключения.

Для процессоров Intel Pentium II и Intel Pentium III актуален другой метод разгона, не связанный с изменением множителей. Заключается он в повышении тактовой частоты host-шины. Так, например, процессор Pentium II-266 (4 х 66 МГц) можно разогнать до 300 МГц (4 х 75 МГц) или даже до 333 МГц (4 х 83 МГц), процессор Pentium III-500 (5 х 100 МГц) - до 560 МГц (5 х 112 МГц). При этом, как правило, без увеличения напряжения питания процессоров.

Примеры разгона процессоров Pentium II

Примеры разгона процессоров Pentium III

Следует отметить, что с целью уменьшения энергопотребления и соответственно тепловыделения фирмы - производители процессоров по мере совершенствования технологии их производства уменьшают уровни питающих напряжений. Не редки случаи, когда процессоры одного типа с равными внутренними и внешними частотами, но выпущенные в разное время и имеющие несовпадающие серийные номера, имеют разные напряжения питания. BIOS современных материнских плат обычно легко и правильно определяет необходимые уровни питающих напряжений процессоров. Однако для обеспечения устойчивой работы на высоких частотах иногда приходится несколько увеличивать напряжения питания. Но для разных процессоров эти уровни и их увеличение, конечно, должны быть разными. Именно поэтому для некоторых материнских плат и процессоров оптимальными могут оказаться разные наборы параметров разгона процессоров, например, могут отличаться от рекомендованных значений величины напряжения питания. Для других материнских плат - разгон вообще невозможен как метод повышения производительности компьютера. Такие материнские платы автоматически определяют все необходимые для процессора режимы, а средств их изменения в своем составе не имеют. Но в любом варианте перед экспериментами следует обеспечить эффективное дополнительное охлаждение как процессора, так и остальных частей компьютера.

Перемаркировка процессора Intel Pentium II - препятствие для разгона

Изменением маркировки процессоров, т. е. их перемаркировкой, некоторые фирмы ряда, как правило, азиатских стран начали заниматься, конечно, нелегально, с появлением первых процессоров. Впервые в широком масштабе такие действия стали практиковать с процессорами 486 и Pentium. По сути, процедура подделки маркировки достаточно проста. С помощью специального станка или пилы снимался тонкий слой с корпуса микросхемы. Затем после шлифовки поверхности на нее наносилась новая маркировка с завышенной рабочей частотой. Нередко на процессорах подделывались данные о производителях. Отличить настоящий процессор от перемаркированного - задача не очень простая. Процессоры одного поколения изготавливались по сходным технологиям и чаще всего использовались одинаковые полупроводниковые пластины. Процессоры с подделанной маркировкой часто работали не хуже, чем настоящие. Впоследствии многие компании, занимающиеся производством процессоров, например Intel, разработали большое количество степеней защиты процессоров. Это касалось и защиты от разгона процессоров.

В сравнительно новом и современном процессоре Intel Pentium II реализована дополнительная защита. Она заключается в использовании специальных схем, блокирующих все коэффициенты умножения, не соответствующие значению, установленному производителем. К сожалению, эта защита часто с легкостью обходится людьми, которые профессионально занимаются перемаркировкой процессоров, - вскрыв картридж, они просто удаляют нежелательные схемы защиты.

Утверждается, что существуют программы, которые способны отличить настоящие процессоры Intel Pentium II с частотой 300 МГц от перемаркированных. Реализуется это с помощью анализа кэш-памяти в картридже процессора. Дело в том, что процессоры Intel Pentium II с частотой 266 МГц используют кэш-память второго уровня без коррекции ошибок - ЕСС, в то время как процессоры Intel Pentium II с частотой 300 МГц поставляются с памятью, которая использует ЕСС. Однако имеется информация о том, что Intel выпускала процессоры Pentium II с частотами 233"и 266 МГц, которые также использовали ЕСС. Они были в основном ориентированы на использование в серверах. Выходит, что проверки на ЕСС не совсем корректны и дают не всегда правильный результат.

Наиболее совершенные и производительные процессоры ряда Intel Pentium II с частотами 350, 400 и 450 МГц также имеют защиты от разгона. В основном - это фиксация множителя. Дополнительная защита связана с использованием определенных микросхем кэш-памяти L2. Данная кэшпамять отлично работает при установленной частоте, однако устойчиво дает сбои при значительном ее повышении. Данная защита еще не отработана окончательно и поэтому не внедрена повсеместно. Однако при ее отработке она может сильно огорчить профессионалов и любителей разгона.

Следует отметить, что реже всего встречаются перемаркированные процессоры среди тех, которые поставляются в коробке - in box. Процессоры в такой поставке значительно труднее подделать, чем, например, варианты OEM.

Существуют и другие способы защиты, которые пока находятся только в перспективных планах фирмы Intel, а также других фирм - производителей процессоров. Планируется ввести разнообразные схемы идентификации в архитектуру процессоров, подобные тем, что используются в процессорах Intel Pentium III. Кроме того, высказываются идеи о полной фиксации всех частотных параметров. К счастью для энтузиастов разгона, все это пока является только перспективными планами фирм - производителей процессоров.

Увеличение частоты шины процессора

С появлением чипсета 1440ВХ фирмы Intel на рынке появилось множество материнских плат, которые построены на базе этого чипсета и впервые стали стандартно поддерживать частоту host-шины - шины процессора 100 МГц. С помощью шины 100 МГц появилась возможность значительного увеличения частоты процессора, а следовательно, и производительности всего компьютера. Некоторые фирмы-производители расширили диапазон возможных частот, введя более высокие значения. В перечне частот появились такие значения, как 133 МГц и даже 150 МГц. Несомненно, это новый шаг сторонников повышения производительности компьютера за счет использования разгона.

Многие материнские платы были выпущены с учетом строгого соответствия спецификациям фирмы Intel (например, платы производства самой фирмы Intel). К сожалению, для таких плат значение 100 МГц для шины процессора может быть выставлено только для процессоров Intel Pentium II, начиная с частоты 350 МГц. Это связано с тем, что процессоры Intel Pentium II и процессоры Intel Celeron сами задают частоту шины. То есть в зависимости от того, какой процессор используется, host-шина будет работать на частоте 66 МГц или 100 МГц.

Но, как и многие другие варианты защиты такого рода, автоматическую установку частоты можно сравнительно легко убрать.

На плате процессора существует специальный контакт, отвечающий за функцию автоматической установки значения частоты шины процессора. Известен его номер. Это контакт В21.

Все что нужно сделать - это отключить контакт В21, что позволит перейти на частоту 100 МГц для процессора с внешней частотой 66 МГц, реализовав разгон процессора и других подсистем компьютера через увеличение частоты host-шины. Выполнить отключение контакта достаточно просто, но работа требует определенной аккуратности. Существует несколько способов.

Во-первых, можно просто перерезать данный контакт. Однако этот способ нельзя назвать лучшим.

Во-вторых, можно заклеить контакт, например, липкой лентой - скотчем. Это не самый лучший вариант, т. к. клей скотча будет постепенно окислять контакт, а также может сползти с контакта на разъем материнской платы.

В-третьих, можно попробовать замазать контакт В21 любым изолирующим лаком. Это может быть, например, специальный цветной или бесцветный нитролак, лак для ногтей или даже паркетный лак. Использование лака является наиболее эффективным способом. Однако если температура окажется слишком высокой, то структура лака может измениться. В результате изолирующие свойства могут быть нарушены или, что не менее плохо, полимерная пленка превратится в клей. Отличные свойства у специального лака на эпоксидной основе. Можно использовать вместо лака эпоксидную смолу.

Добившись высокой частоты шины процессора, необходимо вспомнить и о том, что такие элементы, как процессор, видеоадаптер и т. д. требуют эффективного охлаждения. Как правило, это достигается за счет использования дополнительных средств.

В случае нестабильной работы процессора и невозможности решения данной проблемы необходимо восстановить нарушенный контакт В21.

Для более точного анализа температурного режима компьютера и оценки необходимых средств охлаждения ниже приведены данные о рассеиваемой мощности процессорами Pentium II и Pentium III.

Pentium II

Pentium III (SECC)

Pentium III (SECC2)

Частота, МГц

Кэш-память L2, Кбайт

Максимальная мощность, рассеиваемая платой, Вт