Тарифы Услуги Сим-карты

Что значит очистить кэш и как это сделать? Что такое кеш? Кеш в браузере зачем нужно чистить

Кэш-память (КП), или кэш , представляет собой организованную в виде ассоциативного запоминающего устройства (АЗУ) быстродействующую буферную память ограниченного объема, которая располагается между регистрами процессора и относительно медленной основной памятью и хранит наиболее часто используемую информацию совместно с ее признаками (тегами), в качестве которых выступает часть адресного кода.

В процессе работы отдельные блоки информации копируются из основной памяти в кэш-память. При обращении процессора за командой или данными сначала проверяется их наличие в КП. Если необходимая информация находится в кэше, она быстро извлекается. Это кэш-попадание . Если необходимая информация в КП отсутствует (кэш-промах ), то она выбирается из основной памяти, передается в микропроцессор и одновременно заносится в кэш-память. Повышение быстродействия вычислительной системы достигается в том случае, когда кэш-попадания реализуются намного чаще, чем кэш-промахи .

Зададимся вопросом: «А как определить наиболее часто используемую информацию? Неужели сначала кто-то анализирует ход выполнения программы, определяет, какие команды и данные чаще используются, а потом, при следующем запуске программы, эти данные переписываются в кэш-память и уже тогда программа выполняется эффективно?» Конечно нет. Хотя в современных микропроцессорах имеется определенный механизм, который позволяет в некоторой степени реализовать этот принцип. Но в основном, конечно, кэш-память сама отбирает информацию, которая чаще всего используется. Рассмотрим, как это происходит.

Механизм сохранения информации в кэш-памяти

При включении микропроцессора в работу вся информация в его кэш-памяти недостоверна.

При обращении к памяти микропроцессор, как уже отмечалось, сна чала проверяет, не содержится ли искомая информация в кэш-памяти.

Для этого сформированный им физический адрес сравнивается с адресами ячеек памяти, которые были ранее кэшированы из ОЗУ в КП.

При первом обращении такой информации в кэш-памяти, естественно, нет, и это соответствует кэш-промаху . Тогда микропроцессор проводит обращение к оперативной памяти, извлекает нужную информацию, использует ее в своей работе, но одновременно записывает эту информацию в кэш.

Если бы в кэш-память заносилась только востребованная микропроцессором в данный момент информация, то, скорее всего, при следующем обращении вновь произошел бы кэш-промах: вряд ли следующее обращение произойдет к той же самой команде или к тому же самому операнду. Кэш-попадания происходили бы лишь после того, как в КП накопится достаточно большой фрагмент программы, содержащий некоторые циклические участки кода, или фрагмент данных, подлежащих повторной обработке. Для того чтобы уже следующее обращение к КП приводило как можно чаще к кэш-попаданиям , передача из оперативной памяти в кэш-память происходит не теми порциями (байтами или словами), которые востребованы микропроцессором в данном обращении, а так называемыми строками . То есть кэш-память и оперативная память с точки зрения кэширования организуются в виде строк. Длина строки превышает максимально возможную длину востребованных микропроцессором данных. Обычно она составляет от 16 до 64 байт и выровнена в памяти по границе соответствующего раздела (рис. 4.1).

Рис. 4.1. Организация обмена между оперативной и кэш-памятью

Высокий процент кэш-попаданий в этом случае обеспечивается благодаря тому, что в большинстве случаев программы обращаются к ячейкам памяи, расположенным вблизи от ранее использованных. Это свойство, называемое принципом локальности ссылок , обеспечивает эффективность использования КП. Оно подразумевает, что при исполнении программы в течение некоторого относительно малого интервала времени происходит обращение к памяти в пределах ограниченного диапазона адресов (как по коду программы, так и по данным).

Например, микропроцессору для своей работы потребовалось 2 байта информации. Если строка имеет длину 16 байт, то в кэш переписываются не только нужные 2 байта, но и некоторое их окружение. Когда микропроцессор обращается за новой информацией, в силу локальности ссылок, скорее всего, обращение произойдет по соседнему адресу. Затем опять по соседнему, опять по соседнему и т. д. Таким образом, ряд следующих обращений будет происходить непосредственно к кэш-памяти, минуя оперативную память (кэш-попадания) . Когда очередной сформированный микропроцессором физический адрес выйдет за пределы строки кэш-памяти (произойдет кэш-промах ), будет выполнена подкачка в кэш новой строки, и вновь ряд последующих обращений вызовет кэш-попадания .

Чем длиннее используемая при обмене между оперативной и кэшпамятью строка, тем больше вероятность того, что следующее обращение произойдет в пределах этой строки. Но в то же время чем длиннее строка, тем дольше она будет перекачиваться из оперативной памяти в кэш. И если очередная команда окажется командой перехода или выборка данных начнется из нового массива, то есть следующее обращение произойдет не по соседнему адресу, то время, затраченное на передачу длинной строки, будет использовано напрасно. Поэтому при выборе длины строки должен быть разумный компромисс между соотношением времени обращения к оперативной и кэш-памяти и вероятностью достаточно удаленного перехода от текущего адреса при выполнении программы. Обычно длина строки определяется в результате моделирования аппаратно-программной структуры системы.

После того как в КП накопится достаточно большой объем информации, увеличивается вероятность того, что формирование очередного адреса приведет к кэш-попаданию . Особенно велика вероятность этого при выполнении циклических участков программы.

Старая информация по возможности сохраняется в кэш-памяти. Ее замена на новую определяется емкостью, организацией и стратегией обновления кэша.

Типы кэш-памяти

Если каждая строка ОЗУ имеет только одно фиксированное место, на котором она может находиться в кэш-памяти, то такая кэш-память называется памятью с прямым отображением .

Предположим, что ОЗУ состоит из 1000 строк с номерами от 0 до 999, а кэш-память имеет емкость только 100 строк. В кэш-памяти с прямым отображением строки ОЗУ с номерами 0, 100, 200, …, 900 могут сохраняться только в строке 0 КП и нигде иначе, строки 1, 101, 201, …, 901

ОЗУ — в строке 1 КП, строки ОЗУ с номерами 99, 199, …, 999 сохраняются в строке 99 кэш-памяти (рис. 4.2). Такая организация кэш-памяти обеспечивает быстрый поиск в ней нужной информации: необходимо проверить ее наличие только в одном месте. Однако емкость КП при этом используется не в полной мере: несмотря на то, что часть кэш-памяти может быть не заполнена, будет происходить вытеснение из нее полезной информации при последовательных обращениях, например, к строкам 101, 301, 101 ОЗУ.

Рис. 4.2. Принцип организации кэш-памяти с прямым отображением

Кэш-память называется полностью ассоциативной , если каждая строка ОЗУ может располагаться в любом месте кэш-памяти.

В полностью ассоциативной кэш-памяти максимально используется весь ее объем: вытеснение сохраненной в КП информации проводится лишь после ее полного заполнения. Однако поиск в кэш-памяти, организованной подобным образом, представляет собой трудную задачу.

Компромиссом между этими двумя способами организации кэш-памяти служит множественно-ассоциативная КП, в которой каждая строка ОЗУ может находиться по ограниченному множеству мест в кэш-памяти.

При необходимости замещения информации в кэш-памяти на новую используется несколько стратегий замещения . Наиболее известными среди них являются:

  • LRU — замещается строка, к которой дольше всего не было обращений;
  • FIFO — замещается самая давняя по пребыванию в кэш-памяти строка;
  • Random — замещение проходит случайным образом.

Последний вариант, существенно экономя аппаратные средства по сравнению с другими подходами, в ряде случаев обеспечивает и более эффективное использование кэш-памяти. Предположим, например, что КП имеет объем 4 строки, а некоторый циклический участок программы имеет длину 5 строк. В этом случае при стратегиях LRU и FIFO кэш-память окажется фактически бесполезной ввиду отсутствия кэш-попаданий. В то же время при использовании стратегии случайного замещения информации часть обращений к КП приведет к кэш-попаданиям.

Некоторые эвристические оценки вероятности кэш-промаха при разных стратегиях замещения (в процентах) представлены в табл. 4.1.

Таблица 4.1. Вероятность кэш-промаха для различной кэш-памяти
Размер кэша,Кбайт Организация кэш-памяти
2-канальная ассоциативная 4-канальная ассоциативная 8-канальная ассоциативная
LRU Random LRU Random LRU Random
16 5.2 5.7 4.7 5.3 4.4 5.0
64 1.9 2.0 1.5 1.7 1.4 1.5
256 1.15 1.17 1.13 1.13 1.12 1.12

Анализ таблицы показывает, что:

  • увеличением емкости кэша, естественно, уменьшается вероятность кэш-промаха , но даже при незначительной на сегодняшний день емкости кэш-памяти в 16 Кбайт около 95 % обращений происходят к КП, минуя оперативную память;
  • чем больше степень ассоциативности кэш-памяти, тем больше вероятность кэш-попадания за счет более полного заполнения КП (время поиска информации в КП в данном анализе не учитывается);
  • механизм LRU обеспечивает более высокую вероятность кэш-попадания по сравнению с механизмом случайного замещения Random, однако этот выигрыш не очень значителен.

Соответствие между данными в оперативной памяти и в кэш-памяти обеспечивается внесением изменений в те области ОЗУ, для которых данные в кэш-памяти подверглись изменениям. Существует два основных способа реализации этих действий: со сквозной записью (writethrough) и с обратной записью (write-back).

При считывании оба способа работают идентично. При записи кэширование со скозной записью обновляет основную память параллельно с обновлением информации в КП. Это несколько снижает быстродействие системы, так как микропроцессор впоследствии может вновь обратиться по этому же адресу для записи информации, и предыдущая пересылка строки кэш-памяти в ОЗУ окажется бесполезной. Однако при таком подходе содержимое соответствующих друг другу строк ОЗУ и КП всегда идентично. Это играет большую роль в мультипроцессорных системах с общей оперативной памятью.

Кэширование с обратной записью модифицирует строку ОЗУ лишь при вытеснении строки кэш-памяти, например, в случае необходимости освобождения места для записи новой строки из ОЗУ в уже заполненную КП. Операции обратной записи также инициируются механизмом поддержания согласованности кэш-памяти при работе мультипроцессорной системы с общей оперативной памятью.

Промежуточное положение между этими подходами занимает способ, при котором все строки, предназначенные для передачи из КП в ОЗУ, предварительно накапливаются в некотором буфере. Передача осуществляется либо при вытеснении строки, как в случае кэширования с обратной записью , либо при необходимости согласования кэш-памяти нескольких микропроцессоров в мультипроцессорной системе, либо при заполнении буфера. Такая передача проводится в пакетном режиме, что более эффективно, чем передача отдельной строки.

Организация внутренней кэш-памяти микропроцессора

Внутренний кэш 32-разрядного универсального микропроцессора является общим при обращении как к командам, так и к данным. Обращение ведется по физическим адресам.

Кэш-память обычно реализуется в виде ассоциативного ЗУ, в котором для каждой строки сохраняются дополнительные сведения, называемые тегом, или признаком, в качестве которого выступает адресный код или его часть. Когда в АЗУ подается адрес, с ним одновременно сравниваются все теги.

Внутренняя кэш-память в микропроцессоре i486 реализует сквозную запись . Начиная с МП Pentium используется сквозная или обратная запись .

Во внешней КП применяется любой способ записи или их комбинация.

Внутренняя кэш-память МП i486 имеет емкость 8 Кбайт и организована в виде 4-канальной ассоциативной памяти. Это означает, что данные из какой-либо строки ОЗУ могут храниться в любой из 4 строк кэш-памяти.

КП состоит из следующих блоков (рис. 4.3):

  • блока данных,
  • блока тегов,
  • блока достоверности и LRU.

Рис. 4.3. Структура внутренней кэш-памяти МП i486

Блок данных содержит 8 Кбайт данных и команд. Он разделен на 4 массива (направления), каждый из которых состоит из 128 строк. Строка содержит данные из 16 последовательных адресов памяти начиная с адреса, кратного 16. Индекс массивов блока данных, состоящий из 7 бит, соответствует 4 строкам КП, по одной из каждого массива. Четыре строки КП с одним и тем же индексом называются множеством.

В блоке тегов имеется один тег длиной 21 бит для каждой строки данных в КП. Блок тегов также разделен на 4 массива по 128 тегов. Тег содержит старшие 21 бит физического адреса данных, находящихся в соответствующей строке КП.

В блоке достоверности и LRU содержится по одному 7-разрядному значению для каждого из 128 множеств строк КП: 4 бита достоверности (V) по одному на каждую строку множества и 3 бита (B0 … B2), управляющие механизмом LRU. Биты достоверности показывают, содержит ли строка достоверные (V = 1) или недостоверные (V = 0) данные. При программной очистке КП и аппаратном сбросе процессора все биты достоверности сбрасываются в 0.

Адресация кэш-памяти осуществляется путем разделения старших 28 бит физического адреса на 2 части. Младшие 7 бит из этих разрядов (разряды 10…4 физического адреса) образуют поле индекса и определяют множество, в котором могут храниться данные. Старшие 21 бит (разряды 31…11 физического адреса) служат полем тега и применяются для определения того, находится ли информация с данным физическим адресом в какой-либо строке выбранного множества.

Поиск в кэш-памяти информации с заданным физическим адресом выполняется следующим образом:

Физический адрес, по которому происходит обращение, разбивается на 3 поля: Тег, Индекс, № байта. 7 разрядов А10…А4 поля индекса определяют одно из 128 множеств.

В выбранном множестве содержатся 4 строки с информацией.

Чтобы определить, присутствует ли нужная информация в одной из строк этого множества, проводится сравнение старших 21 бита физического адреса (поле Тег) с тегами строк выбранного множества. Сравнение проводится только для достоверных строк, то есть тех, у которых в блоке достоверности установлен бит достоверности V = 1.

Если для одной из строк ее тег и разряды А31…А11 физического адреса совпали, то это означает, что произошло кэш-попадание и необходимая информация есть в кэш-памяти.

Считывается найденная строка из 16 байт. Искомый байт в ней определяется 4 младшими разрядами физического адреса (А3…А0).

Если на этапе 3 совпадения не произошло или все строки множества недостоверны, эта ситуация определяется как кэш-промах . В этом случае по сформированному микропроцессором физическому адресу выполняется обращение к оперативной памяти. Из ОЗУ извлекается нужная информация, и содержащая ее строка записывается в свободную строку выбранного множества. Старшие 21бит физического адреса записываются в поле тега этой строки. Если все строки в выбранном множестве достоверны, то замещается строка, к которой дольше всего не было обращений согласно механизму LRU. Этот механизм действует точно так же, как и при вытеснении строк из буфера ассоциативной трансляции TLB.

Режим работы кэш-памяти определяется программно установкой разрядов CD (запрет кэширования) и NW (запрет сквозной записи) в управляющем регистре CR0. Кэширование можно разрешить (это состояние после инициализации при сбросе), можно запретить при наличии достоверных строк (в этом режиме КП действует как быстрое внутреннее ОЗУ) или, наконец, кэширование может быть полностью запрещено.

Управление работой кэш-памяти на уровне страниц

В элементах каталога страниц и таблиц страниц имеются 2 бита, которые применяются для управления выходными сигналами процессора и участвуют в кэшировании страниц.

Бит PCD запрещает (PCD = 1) или разрешает (PCD = 0) кэширование страницы. Запрещение кэширования необходимо для страниц, которые содержат порты ввода/вывода с отображением на память. Оно также полезно для страниц, кэширование которых не дает выигрыша в быстродействии, например, страниц, содержащих программу инициализации.

Бит PWT определяет метод обновления ОЗУ и внешней кэш-памяти (кэш 2-го уровня). Если PWT = 1, то для данных в соответствующей странице определяется кэширование со сквозной записью, при PWT = 0 применяется способ обратной записи. Используется в микропроцессорах начиная с Pentium. Так как внутренняя кэш-память в МП i486 работает со сквозной записью, состояние бита PWT на нее не влияет. Бит PWT в этом случае действует только на внешнюю КП.

Обеспечение согласованности кэш-памяти микропроцессоров в мультипроцессорных системах

Рассмотрим особенности работы кэш-памяти в том случае, когда одновременно несколько микропроцессоров используют общую оперативную память (рис. 4.4). В этом случае могут возникнуть проблемы, связанные с кэшированием информации из оперативной памяти в кэш-память микропроцессоров.

Рис. 4.4. Структура мультимикропроцессорной системы с общей оперативной памятью

Предположим, что МП А считал некоторую строку данных из ОЗУ в свою внутреннюю КП и изменил данные в этой строке в процессе работы.

Мы отмечали, что существует два основных механизма обновления оперативной памяти:

сквозная запись , которая подразумевает, что как только изменилась информация во внутренней кэш-памяти, эта же информация копируется в то же место оперативной памяти, и

обратная запись , при которой микропроцессор после изменения информации во внутреннем кэше отражает это изменение в оперативной памяти не сразу, а лишь в тот момент, когда происходит вытеснение данной строки из кэш-памяти в оперативную. То есть существуют определенные моменты времени, когда информация, предположим, по адресу 2000 имеет разные значения: микропроцессор ее обновил, а в оперативной памяти осталось старое значение. Если в этот момент другой микропроцессор (МП В), использующий ту же оперативную память, обратится по адресу 2000 в ОЗУ, то он прочитает оттуда старую информацию, которая к этому времени уже не актуальна.

Для обеспечения согласованности (когерентности) памяти в мультипроцессорных системах используются аппаратные механизмы, позволяющие решить эту проблему. Такие механизмы называются протоколами когерентности кэш-памяти . Эти протоколы призваны гарантировать, что любое считывание элемента данных возвращает последнее по времени записанное в него значение.

Существует два класса протоколов когерентности:

  • протоколы на основе справочника (directory based): информация о состоянии блока физической памяти содержится только в одном месте, называемом справочником (физически справочник может быть распределен по узлам системы);
  • протоколы наблюдения (snooping): каждый кэш, который содержит копию данных некоторого блока физической памяти, имеет также соответствующую копию служебной информации о его состоянии; централизованная система записей отсутствует; обычно кэши расположены на общей шине, и контроллеры всех кэшей наблюдают за шиной (просматривают ее), чтобы определять, какие обращения по адресам в пределах этого блока происходят со стороны других микропроцессоров.

В мультипроцессорных системах с общей памятью наибольшей популярностью пользуются протоколы наблюдения , поскольку для опроса состояния кэшей они могут использовать уже существующее физическое соединение — шину памяти.

Для поддержания когерентности применяется два основных метода.

Один из методов заключается в том, чтобы гарантировать, что процессор должен получить исключительные права доступа к элементу данных перед выполнением записи в этот элемент данных. Этот тип протоколов называется протоколом записи с аннулированием (write invalidate protocol), поскольку при выполнении записи он аннулирует другие копии. Это наиболее часто используемый протокол как в схемах на основе справочников , так и в схемах наблюдения . Исключительное право доступа гарантирует, что во время выполнения записи не существует никаких других копий элемента данных, в которые можно писать или из которых можно читать: все другие кэшированные копии элемента данных аннулированы.

Альтернативой протоколу записи с аннулированием является обновление всех копий элемента данных в случае записи в этот элемент данных.

Этот тип протокола называется протоколом записи с обновлением (write update protocol), или протоколомзаписи с трансляцией (write broadcast protocol).

Эти две схемы во многом похожи на схемы работы кэш-памяти со сквозной и с обратной записью. Ключевым моментом реализации в многопроцессорных системах с небольшим числом процессоров как схемы записи с аннулированием, так и схемы записи с обновлением данных, является использование для выполнения этих операций механизма шины. Для выполнения операции обновления или аннулирования процессор просто захватывает шину и транслирует по ней адрес, по которому должно производиться обновление или аннулирование данных. Все процессоры непрерывно наблюдают за шиной, контролируя появляющиеся на ней адреса.

Процессоры проверяют, не находится ли в их кэш-памяти адрес, появившийся на шине. Если это так, то соответствующие данные в кэше либо аннулируются, либо обновляются в зависимости от используемого протокола.

Рассмотрим один из наиболее распространенных протоколов, обеспечивающих согласованную работу кэш-памяти нескольких микропроцессоров и основной памяти в мультимикропроцессорных системах, протокол MESI , который относится к группе протоколов наблюдения с аннулированием . Будем знакомиться с ним на примере двухпроцессорной системы, состоящей из микропроцессоров A и B.

Этот протокол использует 4 признака состояния строки кэш-памяти микропроцессора, по первым буквам которых и называется протокол:

  • измененное состояние (Modified): информация, хранимая в кэшпамяти микропроцессора А, достоверна только в этом кэше; она отсутствует в оперативной памяти и в кэш-памяти других микропроцессоров;
  • исключительная копия (Exclusive): информация, содержащаяся в кэше А, содержится еще только в оперативной памяти;
  • разделяемая информация (Shared): информация, содержащаяся в кэше А, содержится в кэш-памяти по крайней мере еще одного МП, а также в оперативной памяти;
  • недостоверная информация (Invalid): в строке кэш-памяти находится недостоверная информация.

Таким образом, состояние признаков потокола MESI отражает следующие состояния (по отношению к МПА) строки кэш-памяти (табл. 4.2):

Таблица 4.2. Формирование признаков состояния протокола MESI
Cостояние признака протокола Состояние строки памяти
Кэш А Кэш В ОЗУ
Modified Д НД НД
Shared Д Д Д
Exclusive Д НД Д
Invalid НД Х Х

При работе микропроцессора А с точки зрения обеспечения когерентности памяти возможны следующие ситуации:

  • RH (Read Hit) — кэш-попадание при чтении;
  • WH (Write Hit) — кэш-попадание при записи;
  • RME (Read Miss Exclusive) — кэш-промах при чтении;
  • RMS (Read Miss Shared) — кэш-промах при чтении, но соответствующий блок есть в кэш-памяти другого микропроцессора;
  • WM (Write Miss) — кэш-промах при записи;
  • SHR (Snoop Hit Read) — обнаружение копии блока при прослушивании операции чтения другого кэша;
  • SHW (Snoop Hit Write) — обнаружение копии блока при прослушивании операции записи другого кэша.

Наибольший интерес здесь представляют две последние позиции.

Современные микропроцессоры имеют двунаправленную шину адреса.

Выдавая информацию на эту шину, микропроцессор адресует ячейки оперативной памяти или устройства ввода-вывода. В силу того, что в рассматриваемой мультипроцессорной системе микропроцессоры связаны общей шиной, в том числе и шиной адреса, принимая информацию по адресным линиям, микропроцессор определяет, было ли обращение по адресам, содержащимся в его кэш-памяти, со стороны других микропроцессоров. При обнаружении такого обращения меняется состояние строки кэш-памяти микропроцессора.

Изменения признака состояния блока кэш-памяти МП в зависимости от различных ситуаций в его работе и работе мультимикропроцессорной системы в целом представлены на рис. 4.5.

Рис. 4.5. MESI-диаграмма обеспечения когерентности кэш-памяти

Проиллюстрируем некоторые из представленных переходов.

Пусть блок кэш-памяти находится в состоянии Modified, то есть достоверная информация находится только в кэш-памяти данного МП. Тогда в случае обнаружения при прослушивании адресной шины обращения со стороны другого микропроцессора для чтения информации по входящим в данную строку адресам микропроцессор должен передать эту строку кэшпамяти в ОЗУ, откуда она уже будет прочитана другим микропроцессором.

При этом состояние строки в кэш-памяти рассматриваемого микропроцессора изменится с модифицированного на разделяемое (Shared).

Если строка кэш-памяти находилась в состоянии Invalid, то есть информация в ней была недостоверной, то по отношению к этой строке следует рассматривать только ситуации, связанные с кэш-промахами . Так, если произошел кэш-промах при выполнении операции записи, то необходимая строка будет занесена в кэш-память данного МП, в эту строку будут записаны измененные данные, и она приобретет статус исключительного владельца новой информации (Modified).

Краткие итоги . В лекции рассмотрены общие принципы функционирования кэш-памяти микропроцессора, организация кэш-памяти с прямым отображением, полностью ассоциативной и множественно-ассоциативной КП. Рассмотрены основные механизмы обновления оперативной памяти: кэширование со сквозной и с обратной записью. Представлена организация внутренней кэш-памяти микропроцессора. Разобраны способы обеспечения согласованности кэш-памяти микропроцессоров в мультипроцессорных системах.

Ч то является самым грязным местом на компьютере? Думаете, корзина? Папки пользователя? Система охлаждения? Не угадали! Самое грязное место – это кэш! Ведь его постоянно приходится чистить!

На самом деле кэшей на компьютере много, и служат они не свалкой отходов, а ускорителями оборудования и приложений. Откуда же у них репутация «системного мусоропровода»? Давайте разберемся, что такое кэш, каким он бывает, как работает и почему время от времени .

Понятие и виды кэш-памяти

К эшем или кэш-памятью называют специальное хранилище часто используемых данных, доступ к которому осуществляется в десятки, сотни и тысячи раз быстрее, чем к оперативной памяти или другому носителю информации.

Собственная кэш-память есть у приложений (веб-браузеров, аудио- и видеоплееров, редакторов баз данных и т. д.), компонентов операционных систем (кэш эскизов, DNS-кэш) и оборудования (cache L1-L3 центрального процессора, фреймбуфер графического чипа, буферы накопителей). Реализована она по-разному – программно и аппаратно.

  • Кеш программ – это просто отдельная папка или файл, куда загружаются, например, картинки, меню, скрипты, мультимедийный контент и прочее содержимое посещенных сайтов. Именно в такую папку в первую очередь «ныряет» браузер, когда вы открываете веб-страницу повторно. Подкачка части контента из локального хранилища ускоряет ее загрузку и .

  • В накопителях (в частности, жестких дисках) кэш представляет собой отдельный чип RAM емкостью 1-256 Mb, расположенный на плате электроники. В него поступает информация, считанная с магнитного слоя и пока не загруженная в оперативную память, а также данные, которые чаще всего запрашивает операционная система.

  • Современный центральный процессор содержит 2-3 основных уровня кеш-памяти (ее также называют сверхоперативной памятью), размещенных в виде аппаратных модулей на одном с ним кристалле. Самым быстрым и наименьшим по объему (32-64 Kb) является cache Level 1 (L1) – он работает на той же частоте, что и процессор. L2 занимает среднее положение по скорости и емкости (от 128 Kb до 12 Mb). А L3 – самый медленный и объемный (до 40 Mb), на некоторых моделях отсутствует. Скорость L3 является низкой лишь относительно его более быстрых собратьев, но и он в сотни раз шустрее самой производительной оперативки.

Сверхоперативная память процессора применяется для хранения постоянно используемых данных, перекачанных из ОЗУ, и инструкций машинного кода. Чем ее больше, тем процессор быстрее.

Сегодня три уровня кеширования – уже не предел. С появлением архитектуры Sandy Bridge корпорация Intel реализовала в своей продукции дополнительный cache L0 (предназначенный для хранения расшифрованных микрокоманд). А наиболее высокопроизводительные ЦП имеют и кэш четвертого уровня, выполненный в виде отдельной микросхемы.

Схематично взаимодействие уровней cache L0-L3 выглядит так (на примере Intel Xeon):

Человеческим языком о том, как всё это работает

Ч тобы было понятно, как функционирует кэш-память, представим человека, работающего за письменным столом. Папки и документы, которые он использует постоянно, лежат на столе (в кэш-памяти ). Для доступа к ним достаточно протянуть руку.

Бумаги, которые нужны ему реже, хранятся недалеко на полках (в оперативной памяти ). Чтобы их достать, нужно встать и пройти несколько метров. А то, с чем человек в настоящее время не работает, сдано в архив (записано на жесткий диск ).

Чем шире стол, тем больше документов на нем поместится, а значит, работник сможет получить быстрый доступ к большему объему информации (чем емкость кэша больше, тем в теории быстрее работает программа или устройство ).

Иногда он допускает ошибки – хранит на столе бумаги, в которых содержатся неверные сведения, и использует их в работе. В результате качество его труда снижается (ошибки в кэше приводят к сбоям в работе программ и оборудования ). Чтобы исправить ситуацию, работник должен выбросить документы с ошибками и положить на их место правильные (очистить кэш-память ).

Стол имеет ограниченную площадь (кэш-память имеет ограниченный объем ). Иногда ее можно расширить, например, придвинув второй стол, а иногда нельзя (объем кэша можно увеличить, если такая возможность предусмотрена программой; кэш оборудования изменить нельзя, так как он реализован аппаратно ).

Другой способ ускорить доступ к большему объему документов, чем вмещает стол – найти помощника, который будет подавать работнику бумаги с полки (операционная система может выделить часть неиспользуемой оперативной памяти для кэширования данных устройств ). Но это всё равно медленнее, чем брать их со стола.

Документы, лежащие под рукой, должны быть актуальны для текущих задач. За этим обязан следить сам работник. Наводить порядок в бумагах нужно регулярно (вытеснение неактуальных данных из кэш-памяти ложится «на плечи» приложений, которые ее используют; некоторые программы имеют функцию автоматической очистки кэша ).

Если сотрудник забывает поддерживать порядок на рабочем месте и следить за актуальностью документации, он может нарисовать себе график уборки стола и использовать его, как напоминание. В крайнем случае – поручить это помощнику (если зависимое от кэш-памяти приложение стало работать медленнее или часто загружает неактуальные данные, используйте средства очистки кэша по расписанию или раз в несколько дней проводите эту манипуляцию вручную ).

С «функциями кэширования» мы на самом деле сталкиваемся повсеместно. Это и покупка продуктов впрок, и различные действия, которые мы совершаем мимоходом, заодно и т. д. По сути, это всё то, что избавляет нас от лишней суеты и ненужных телодвижений, упорядочивает быт и облегчает труд. То же самое делает и компьютер. Словом, если бы не было кэша, он бы работал в сотни и тысячи раз медленнее. И нам бы вряд ли это понравилось.

Ещё на сайте:

Что такое кэш, зачем он нужен и как работает обновлено: Февраль 25, 2017 автором: Johnny Mnemonic

Здравствуйте, уважаемые читатели блога сайт. Что такое кэш? Это на самом деле довольно простое и в то же время довольно-таки многообразное понятие.

Представьте, что начальник подошел к вашему столу и передает документы, которые вы должны посмотреть и что-то там с ними сделать. Будет ли он стоять рядом с вами и отдавать их по одному, ожидая их обработки в реальном времени?

Вряд ли. Скорее всего он положит их вам на стол и пойдет дальше, а вы уже будете их брать из стопки по одному и обрабатывать. Такая стопка и будет являться прообразом кэша (промежуточного буфера). Служит он для ускорения общего процесса обработки информации между системами работающими с разными скоростями.

Что такое кеш и где он используется?

Где может использоваться кэш ? На самом деле во многих областях. Сегодня мы будем говорить в основном про кеширование, а точнее про очистку кэша в браузерах, но применяется промежуточный буфер и в компьютерной технике.

Смотрите. В любом компьютере есть центральный процессор, который работает чудовищно быстро и особенно эта разница заметна, когда мы сравним его возможности с возможностями жесткого диска. Это одно из самых медленных устройств в компьютере, и если процессор будет всегда ожидать данные для обработки непосредственно с этого «тормоза», то работать в операционной системе будет практически невозможно, ну или во всяком случае не комфортно.

Что же делать? Тут нам как раз и приходит на помощь кэш, в роли которого выступает оперативная память. Она не умеет как жесткий диск хранить данные после отключения питания, но зато она быстрее его в десятки раз. Вот именно поэтому она и выступает в роли кеша (промежуточного буфера), в который все запущенные в ОС программы загружают наиболее часто используемые данные, чтобы максимально снизить число обращений к диску.

Это был пример кэша на программном уровне , но ведь скорость процессора по-прежнему чудовищно высока и даже оперативная память для него слишком медлительна. Что же делать? А тут нам опять на помощь приходит кеш, но уже выполненный в «железе». У современных процессоров имеются области, отводимые под кеш (складирование фрагментов информации, взятой из оперативки для подгрузки их в процессор).

Причем этих самых уровней кэша в процессоре может быть аж штуки три — внешний (самый большой и медленный) для разговора на одном языке с оперативкой, внутренний (самый маленький и быстрый) для общения на сверхскоростях центрального процессора, ну и средний (во всем). Эти уровни кэша обычно располагаются с процессором на одном кристалле.

Ах, да. Если вы вебмастер, то наверняка слышали про кеширование в движках сайтов , на подобии Joomla, WordPress и других. Что это такое? Дело в том, что любой движок собирает вебстраницу, к которой обратился пользователь, буквально налету, что серьезно нагружает сервер, где этот сайт размещается и снижает скорость работы ().

Поэтому умные люди придумали использовать кеш, где хранятся уж собранные вебстраницы. В этом случае страницы сайта будут пересоздаваться заново только тогда, когда обновится их содержание или когда вы принудительно сбросите кэш (речь не идет об , а именно про содержимое веб-страницы). Читайте про и , если вам это интересно.

Кэширование в браузерах

Но самое для нас с вами, уважаемые читатели, воплощение кеша — это, конечно же, кеширование вебстраниц браузером (читайте про то, и ). Зачем это нужно и чем этот кэш принципиально отличается от описанного выше? Отличается сильно, хотя суть его работы остается прежней — увеличивать скорость передачи информации.

Это позволяет вам даже при слабом интернет канале довольно быстро работать со страницами одного и того же сайта. Кроме этого, кэширование вебстраниц позволяет вам существенно экономить трафик. Пусть это и не имеет особого значения при безлимитном подключении, но зачастую мобильный трафик оплачивается помегабайтно, а значит кэш позволит вам немного сэкономить.

Кешироваться могут как вебстраницы целиком (что используется редко), так и их отдельные фрагменты. Помните я говорил, что почти все современные сайты состоят из содержимого, заключенного в теги языка Html (читайте ), и отдельный файлик со стилевым оформлением (CSS) и джваскрипт кодом.

То же самое касается и изображений, которые используются на всех или какой-то части страниц сайта. Это могут быть элементы оформления (фотография в шапке, фоновая картинка, дизайнерские изыски, логотип и т.п. вещи). Все это, однажды попадая в кеш браузера, в дальнейшем уже будет браться именно из него.

Вот тут-то иногда и возникает проблема у начинающих вебмастеров. Внося некоторые изменения в дизайн сайта, вы можете не увидеть эти самые изменения в браузере, потому что он по-прежнему формирует вебстраницу на основе данных подгружаемых из кэша. Как же заставить браузер забыть на время про кеш и загрузить страницу и все ее составляющие заново с сервера?

Первое, что приходит в голову — это кликнуть по кнопке обновления на панели управления браузера или нажать на кнопку F5 на клавиатуре, что по сути одно и тоже.

Однако, это не всегда помогает. Поэтому можно чуть усложнить комбинацию и нажать Ctrl+F5 или же, удерживая нажатым Shift , можно кликнуть по кнопке обновления на панели управления в вашем браузере. В любом случае мы таким образом заставим браузер взять все элементы открытой вебстраницы заново с сервера, а не из кеша .

Однако бывают ситуации, когда даже такой способ сброса кэша не помогает и его нужно будет очистить полностью, т.е. удалить все файлы из временного хранилища, которое использует ваш браузер. Для разных типов обозревателей этот процесс может немного отличаться.

Кстати, другой причиной, побуждающей вас почистить кэш в Опере, Хроме, Мозиле, Интернет Эксплорере или Яндекс браузере, может быть и банальное нежелание оставлять следы своей интернет-деятельности на домашнем или рабочем компьютере. Ведь браузер кеширует не только картинки, текст и видео, но и Урл адреса по которым вы ходили.

Помните, в статье про я упоминал, что браузер умеет кэшировать данные полученные с ДНС серверов (соответствие доменных имен и IP адресов серверов, где эти самые сайты размещаются). В общем, желание очистить промежуточный буфер браузера может возникнуть по множеству причин.

Как сделать так, чтобы чистить кэш в браузере было не нужно?

Еще оговорюсь, что, вообще-то, за последние несколько лет во многие современные браузеры была добавлена функция анонимного серфинга по интернету, когда все данные кеша автоматически удаляются и ничего другого, что могло бы вас скомпрометировать в недрах обозревателя, не остается. Удобная штука. Я про нее подробно писал в своих статьях про:


А теперь, собственно, хочу перейти к вопросу о том, как почистить кэш во всех упомянутых выше браузерах.

Как очистить кэш в Опере, Хроме, Мозиле и Яндекс браузере?

Итак, приступим. В каждом браузере есть нюансы очистки, но для тех из них, что построены на основе (а точнее движка WebKit) будет все практически идентично. На этом движке сейчас работают Гугл Хром, Яндекс Браузер и Новая Опера. Но, обо всем по порядку.

Как почистить кэш в Опере


Как очистить кэш в Хроме и Яндекс Браузере?

Начнем с Google Chrome , хотя в браузере от Яндекса все примерно так же работает. Итак, в настройки, отвечающие за очистку кеша в этом браузере, можно попасть несколькими способами:


В обоих случаях откроется одно и то же окно очистки истории ваших блужданий по интернету с помощью браузера Хром:

Оно очень похоже на то, что мы только что видели при попытке почистить кеш в Опере. Здесь нужно выбрать период, за который вся история будет удалена, поставить галочку в поле «Очистить кэш» , ну и нажать на соответствующую кнопку внизу.

В случае Яндекс Браузера , последовательность действия будет практически такой же. Жмете либо на клавиши Ctrl+Shift+Delete, находясь в окне браузера, либо переходите из меню шестеренки в настройки и ищите кнопку «Очистить историю».

Откроется практически идентичное окно (с тем, что мы в Хроме и новой Опере наблюдали), где вы опять же поставите галочку и кликните по нужной кнопочке.

Как удалить кеш в Мозиле и Интернет Эксплорере?

В случае Мозилы (firefox) нам опять же нужно будет нажать сочетание клавиш Ctrl+Shift+Delete , либо выбрать из верхнего меню кнопки «Firefox» пункты «Журнал» — «Удалить недавнюю историю» .

В открывшемся окне достаточно поставить галочку в поле «Кэш», выбрать период, за который должна быть удалена историю из промежуточного буфера, ни и, собственно, нажать на кнопку «Удалить сейчас» :

В дело обстоит практически так же, как и у его текущих конкурентов. Для очистки истории посещенных страниц можно будет нажать уже знакомую нам комбинацию клавиш: Ctrl+Shift+Delete .

Либо можно выбрать из меню шестеренки (расположена вверху справа) пункты «Безопасность» — «Удалить журнал обозревателя»:

Также из выпадающего меню кнопки шестеренки можно будет выбрать пункт «Свойства обозревателя» .

В открывшемся окне нужно нажать на кнопку «Удалить» в области «История просмотра»:

В любом из этих трех вариантов откроется одно и то же окно, где нужно будет поставить галочку в строке «Временные файлы интернета» (это и есть пресловутый кэш) и нажать на расположенную внизу кнопку «Удалить».

Удачи вам! До скорых встреч на страницах блога сайт

посмотреть еще ролики можно перейдя на
");">

Вам может быть интересно

История поиска и просмотров в Яндексе - как ее открыть и посмотреть, а при необходимости очистить или удалить Что такое cookie и как почистить куки в современных браузерах
Инкогнито - что это такое и как включить режим инкогнито в Яндекс браузере и Гугл Хроме Почему не загружается и не работает социальная сеть Одноклассники, а так же как ее открыть, если она заблокирована Устарел или не работает Adobe Flash Player - как обновить, удалить и установить бесплатный плагин флеш плеера последней версии

Кэш-память процессора позволяет получать данные с очень высокой скоростью, значительно ускоряя вычисления. В кэш – память помещаются данные, которые часто требуются процессору. Это позволяет не затрачивать лишнее время на считывание данных из оперативной памяти. Если процессор запрашивает данные, которые отсутствуют в кэш-памяти, то запрос передается через шину памяти в оперативную память, а затем найденные данные отправляются в процессор. Не трудно догадаться, что на такой запрос уходит довольно много времени. Чтобы рассказать вам, как устроена кэш-память, мы будем использовать аналогию с обычной библиотекой.

Предположим, что у нас есть библиотека с одним библиотекарем. В библиотеку приходит посетитель и просит достать ему первую часть Гарри Поттера. Библиотекарь идет к книжным полкам, находит книгу и приносит ее посетителю. Он, пролистав, отдает ее обратно библиотекарю, который относит и ставит книгу обратно на полку. Допустим, следом приходит еще один посетитель и просит то же самое. Цикл повторяется снова. Вот так же работает и система, у которой нет кэш-памяти.

Для чего процессору нужна кэш-память?

Теперь, давайте посмотрим, что произойдет, если у нас есть в наличие кэш-память. Представим, что наш библиотекарь сидит за столом, в котором есть ящик, который будет служить ему в качестве кэш – памяти. Процедура та же - первый посетитель дает заявку на книгу, но когда она возвращается библиотекарю, то он не относит ее на полку, а помещает в ящик, находящийся в столе. Когда придет другой посетитель и тоже закажет ту же самую книгу, то библиотекарю не надо будет за ней никуда идти, он просто возьмет ее из ящика. Аналогичным образом работает и кэш – память процессора. Каждый раз, когда запрашиваются новые данные, процессор ищет их сначала в кэш-памяти. Подобная мера позволяет многократно увеличить скорость работы процессора.

Кэш-память хранит только наиболее часто используемые элементы данных?

Нет, кэш-память является довольно интеллектуально продвинутой памятью, в которую помещаются также и те данные, которые, вероятно, будут востребованы в ближайшее время. Продолжая нашу аналогию с библиотекарем, это можно объяснить следующим образом. Когда посетитель просит библиотекаря достать ему первую часть Гарри Поттера, то наш догадливый библиотекарь также берет с полки и вторую часть Гарри Поттера, резонно полагая, что посетитель, прочитав первую часть, в скором времени попросит и вторую. И когда тот ее просит, то она тут же достается из того же ящика стола. Аналогичным образом, когда кэш-память извлекает элементы данных из основной памяти, она также выбирает данные, которые находятся по адресам, рядом с затребованными данными. Эти рядом расположенные блоки данных, которые передаются в кэш, называется строки кэша.

Два уровня кэш-памяти процессора

Большинство жестких дисков и некоторых других компонентов компьютера используют всего один уровень кэш – памяти. В отличие от них, кэш – память процессора является двухуровневой, в которой кэш 1-го уровня (L1) меньше и быстрее, а кэш 2-го уровня немного медленнее первого, но при этом намного быстрее, чем оперативная память. Кэш L1 разделен на две части, а именно, на кэш команд и на кэш данных. В кэше команд хранится набор инструкций, которые необходимы процессору для вычислений, в то время как кэш данных хранит значения, которые необходимы для текущего исполнения. Кэш L2 отвечает за загрузку данных из основной памяти. Опять же, возвращаясь к нашей библиотеке.

Рассмотрим, например, ящик библиотекаря как кэш L1. В один из сильно загруженных работой дней, когда посетителей много, спрос на книги велик, а ящик в столе заполнен, возникает риск его переполнения. В этом случае на помощь библиотекарю приходит рядом стоящий книжный шкаф (L2). В него библиотекарь будет складывать книги, когда не останется места в ящике стола. Теперь, когда у него спросят некоторые популярные книги, то он сначала посмотрит в ящик стола и если не найдет там запрашиваемой книги, то пойдет к книжному шкафу. Который, как вы, наверное, догадались, в нашей аналогии играет роль кэш-памяти второго уровня.

Аналогичным образом, в процессоре, когда кэш L1заполнен, данные сохраняются в кэш-память L2. Процессор в первую очередь ищет данные в первом кэше L1, и если они не будут найдены, то далее разыскиваются в L2. Если данные не будут найдены в L2, то следует запрос в оперативную память, и в последнюю очередь запрос делается к жесткому диску.

Чем больше кэш, тем лучше?

На этот вопрос можно ответить одновременно и, да и нет. Больший объем кэша позволяет быстро получать данные в случае, если они доступны в любом из уровней L1 и L2. Вернемся к нашему примеру с библиотекой. Если посетитель попросит какую – либо популярную книгу, которая не хранится библиотекарем в ящике стола или в книжном шкафу, то он сначала поищет ее в ящике, а затем перейдет к книжному шкафу. То есть некоторое количество времени будет тратиться впустую, прежде чем книга, наконец, будет извлечена с книжной полки библиотеки. Так же и процессор сначала проверяет кэш первого уровня (L1), затем второго (L2) и только после этого, отправляет запрос в оперативную память. Когда данные обнаруживаются в кэше, то это называется «попаданием», в противоположном случае – «промахом»


Таким образом, в процессе поиска данных в двух уровнях кэша, многопроцессорного времени фактически тратится зря. Элементы данных периодически обновляются и заменяются с использованием различных алгоритмов, чтобы максимизировать случаи попадания в кэш.


Многие сейчас, вероятно, сделали однозначный вывод, если кэш-память работает столь быстро, то почему бы не реализовать ее достаточно большой, с тем, чтобы все данные, с которыми работает оперативная память, хранить в кэше. Однако не все так просто, кэш память обеспечивает быстрый доступ к найденным, но при этом сам иерархический поиск данных влечет за собой большие ресурсные расходы. Поэтому наиболее предпочтительным вариантом является оптимальный баланс между скоростью поиска данных и размером кэш-памяти.

Когда речь идет об информационных технологиях, очень часто можно услышать такое слово как "кэш". Однако, далеко не все люди знают зачем он нужен, для каких целей применяется и прочее. Поэтому в рамках данной статьи я рассмотрю вопрос что такое кэш , а так же расскажу о некоторых нюансах и проблемах, связанных с использованием кэша.

Но, прежде, чем продолжать, пара слов. Существует много различных технологий и практических реализаций кэша, поэтому в рамках данной статьи я не буду заострять на них внимание и углубляться в детали, так как найти полную информацию о каждом типе кэширования очень легко. Другими словами, статья предназначена для тех людей, которым просто интересно узнать, что это за штука, как она устроена, какие с ней бывают проблемы и прочее.

Итак. начнем.

Разберем что такое кэш

Кэш - это временное хранилище данных (файлов, информации и прочего), которое позволяет существенно экономить время и ресурсы. Стоит сразу отметить, что я намеренно не указал за счет чего происходит экономия, так как в зависимости от технологий это может происходить благодаря разным факторам.

Самый простой способ понять, что такое кэш. Это представить себе два варианта просмотра видео. В первом случае, вы когда-то давно скачали фильм и смотрите его с жесткого диска. Во втором случае, смотрите ролик через браузер в интернете. Фильм в обоих случаях один и тот же. Однако, первый метод позволяет вам приступить к просмотру сразу. Второй же подход требует от вас подождать того момента, когда загрузится хотя бы часть видео. Как видите, первый метод позволяет вам насладится художеством гораздо быстрее. Если говорить о кэше, то в данном случае это каталог, где хранятся ваши фильмы, а экономия достигается за счет того, что файл с роликом у вас уже есть и что скорость чтения с жесткого диска существенно быстрее, чем скорость скачивания файлов из интернета.

Приведу другой пример. Практически каждый день вы открываете сайты в браузере и, наверное, замечали, что если сайт открывается первый раз, то это происходит долго. Все последующие открытия страниц происходят гораздо быстрее. Почему так получается? Сегодня, чтобы сайт мог красиво отобразиться в браузере, последнему необходимо скачать кучу файлов, которые в сумме легко могут занимать более 1-5 Мб. Если при каждом посещении страницы будет необходимо снова и снова скачивать эти файлы, то сайт будет очень медленно открываться. Чтобы этого не происходило и страницы при повторном посещении открывались быстро, браузер сохраняет эти файлы у себя во временном каталоге, помечая их метками о сайтах, откуда они были скачаны. Этот каталог и представляет собой кэш. Разница в скорости происходит из-за того же, что и в случае с примером про фильмы.

Если говорить об аппаратуре и устройствах компьютера, такой как процессор и жестком диске, то там ситуация с кэшем немного иная. Рассмотрим как пример процессор. Его кэш представляет собой просто очень быструю память (примерно в 10 раз быстрее оперативной памяти), которую сложно сделать большой по размеру вмещаемых данных. Так, например, вы никогда не встретите процессоры с кэш-памятью размером в 1 Гб. Сам этот кэш хранит в себе машинные коды, которые необходимо выполнять процессору, и часто используемые данные. Экономия достигается за счет того, что в то время, когда процессор выполняет команды, параллельно из оперативной памяти записываются следующие машинные коды в кэш. Если чуть проще, то суть в одновременном наполнении кэша следующими кодами и выполнении процессором уже загруженных кодов. Кроме того, как уже говорил, в кэше так же хранятся данные, к которым процессору необходимо часто обращаться.

Примечание : Вообще кэширование у процессора устроено более сложно, чем я описал, но в общем и целом по смыслу происходит именно так.

Как видите, кэш может быть реализован разными методами, а прирост производительности и экономия достигаться за счет разных факторов.

Какие бывают проблемы с кэшем

Проблемы с кэшем в основном строятся на том факте, что при повторном использовании ранее сохраненных данных эта информация может быть уже неактуальной. Возникать это может как из-за ошибок системы кэширования, так и из-за повреждения данных другими системами (программами).

Примечание : Конечно, бывают случаи с проблемами из-за сбоев самих устройств, но это очень редкие случаи.

Рассмотрим несколько обыденных проблем с кэшем, с которыми сталкивается практически каждый человек:

1. В эпоху интернета, сложно не отметить проблемы с кэшем браузера . Суть в данном случае проста. Как уже говорил, браузер сохраняет файлы, необходимые для красивого и корректного отображения сайтов. Если на сайте эти файлы редактировались, а браузер не скачал их отредактированную версию, то, вероятнее всего, будут возникать ошибки - кнопки не запускаться, стили съезжать, "кракозябры" появляться и прочее. Именно поэтому, часто можно услышать совет при проблемах с сайтами - почистить кэш браузера. Если вы ранее считали, что эта шутка и кто-то вас подкалывает, то это не так.

2. У программ бывают проблемы с кэшем . Как уже говорилось, временное хранилище может быть организовано разными методами и предназначено для разных целей. Так, например, некая программа может хранить в кэше промежуточные результаты, которые требуют существенного времени на их вычисление. Если эти вычисления зависят от чего-либо, то периодически могут возникать проблемы из-за того, что данные в кэше не были пересчитаны. И тут так же часто советуют либо запустить функцию очистки кэша, либо удалить определенные файлы.

3. Проблемы с кэшем из-за сбоев Windows . Операционная система Windows содержит ошибки. И в самом этом факте нет ничего удивительного. Практически любая обычная программа содержит в себе ошибки. А Windows это куда более сложная система. Например, возьмем тот же браузер. Как уже говорилось, браузер делает пометки для файлов, находящихся в кэше, чтобы всегда можно было отслеживать насколько актуальными являются версии файлов. Теперь, представьте, что файлы на сайте не менялись, но из-за ошибки Windows файлы в кэше были испорчены. Как вы, наверное, уже догадались, в таком случае сайты будут открываться с ошибками, так как по сведениям браузера файлы актуальны и их не нужно скачивать, а по факту все наоборот.