Тарифы Услуги Сим-карты

Защита от сетевых атак. Виды атак

Во время работы компьютерных систем часто возникают различные проблемы. Некоторые - по чьей-то оплошности, а некоторые являются результатом злоумышленных действий. В любом случае при этом наносится ущерб . Поэтому будем называть такие события атаками, независимо от причин их возникновения.

Существуют четыре основных категории атак:

  • атаки доступа;
  • атаки модификации;
  • атаки на отказ в обслуживании;
  • атаки на отказ от обязательств.

Давайте подробно рассмотрим каждую категорию. Существует множество способов выполнения атак: при помощи специально разработанных средств, методов социального инжиниринга, через уязвимые места компьютерных систем. При социальном инжиниринге для получения несанкционированного доступа к системе не используются технические средства. Злоумышленник получает информацию через обычный телефонный звонок или проникает внутрь организации под видом ее служащего. Атаки такого рода наиболее разрушительны.

Атаки, нацеленные на захват информации, хранящейся в электронном виде, имеют одну интересную особенность: информация не похищается, а копируется. Она остается у исходного владельца, но при этом ее получает и злоумышленник . Таким образом, владелец информации несет убытки, а обнаружить момент, когда это произошло, очень трудно.

Определение атаки доступа

Атака доступа - это попытка получения злоумышленником информации, для просмотра которой у него нет разрешений. Осуществление такой атаки возможно везде, где существует информация и средства для ее передачи (рис. 2.1). Атака доступа направлена на нарушение конфиденциальности информации.


Рис. 2.1.

Подсматривание

Подсматривание ( snooping ) - это просмотр файлов или документов для поиска интересующей злоумышленника информации. Если документы хранятся в виде распечаток, то злоумышленник будет вскрывать ящики стола и рыться в них. Если информация находится в компьютерной системе, то он будет просматривать файл за файлом, пока не найдет нужные сведения.

Подслушивание

Когда кто-то слушает разговор, участником которого он не является, это называется подслушиванием ( eavesdropping ). Для получения несанкционированного доступа к информации

До сих пор нет точного определения термина "атака" (вторжение, нападение). Каждый специалист в области безопасности трактует его по-своему. Наиболее правильным и полным я считаю следующее определение.

Атакой на информационную систему называются преднамеренные действия злоумышленника, использующие уязвимости информационной системы и приводящие к нарушению доступности, целостности и конфиденциальности обрабатываемой информации.

Устраним уязвимости информационной системы - устраним и возможность реализации атак.

На сегодняшний день считается неизвестным, сколько существует методов атак. Говорят о том, что до сих пор отсутствуют какие-либо серьезные математические исследования в этой области. Но еще в 1996 году Фред Коэн описал математические основы вирусной технологии. В этой работе доказано, что число вирусов бесконечно. Очевидно, что и число атак бесконечно, поскольку вирусы - это подмножество множества атак.

Модели атак

Традиционная модель атаки строится по принципу (рис.1) или (рис.2), т.е. атака исходит из одного источника. Разработчики сетевых средств защиты (межсетевых экранов, систем обнаружения атак и т.д.) ориентированы именно на традиционную модель атаки. В различных точках защищаемой сети устанавливаются агенты (сенсоры) системы защиты, которые передают информацию на центральную консоль управления. Это облегчает масштабирование системы, обеспечивает простоту удаленного управления и т.д. Однако такая модель не справляется с относительно недавно (в 1998 году) обнаруженной угрозой - распределенными атаками.
Рисунок 1. Отношение "один к одному"

В модели распределенной атаки используются иные принципы. В отличие от традиционной модели в распределенной модели используются отношения (рис.3) и (рис.4).

Распределенные атаки основаны на "классических" атаках типа "отказ в обслуживании ", а точнее на их подмножестве, известном как Flood-атаки или Storm-атаки (указанные термины можно перевести как "шторм", "наводнение" или "лавина"). Смысл данных атак заключается в посылке большого количества пакетов на атакуемый узел. Атакуемый узел может выйти из строя, поскольку он "захлебнется" в лавине посылаемых пакетов и не сможет обрабатывать запросы авторизованных пользователей. По такому принципу работают атаки SYN-Flood, Smurf, UDP Flood, Targa3 и т.д. Однако в том случае, если пропускная способность канала до атакуемого узла превышает пропускную способность атакующего или атакуемый узел некорректно сконфигурирован, то к "успеху" такая атака не приведет. Например, с помощью этих атак бесполезно пытаться нарушить работоспособность своего провайдера. Но распределенная атака происходит уже не из одной точки Internet, а сразу из нескольких, что приводит к резкому возрастанию трафика и выведению атакуемого узла из строя. Например, по данным России-Онлайн в течение двух суток, начиная с 9 часов утра 28 декабря 2000 г. крупнейший Internet-провайдер Армении "Арминко" подвергался распределенной атаке. В данном случае к атаке подключились более 50 машин из разных стран, которые посылали по адресу "Арминко" бессмысленные сообщения. Кто организовал эту атаку, и в какой стране находился хакер - установить было невозможно. Хотя атаке подвергся в основном "Арминко", перегруженной оказалась вся магистраль, соединяющая Армению с всемирной паутиной. 30 декабря благодаря сотрудничеству "Арминко" и другого провайдера - "АрменТел" - связь была полностью восстановлена. Несмотря на это компьютерная атака продолжалась, но с меньшей интенсивностью.

Этапы реализации атак

Можно выделить следующие этапы реализации атаки:

Обычно, когда говорят об атаке, то подразумевают именно второй этап, забывая о первом и последнем. Сбор информации и завершение атаки ("заметание следов") в свою очередь также могут являться атакой и могут быть разделены на три этапа (см. рис.5).
Рисунок 5. Этапы реализации атаки

Cбор информации - это основной этап реализации атаки. Именно на данном этапе эффективность работы злоумышленника является залогом "успешности" атаки. Сначала выбирается цель атаки и собирается информация о ней (тип и версия операционной системы, открытые порты и запущенные сетевые сервисы, установленное системное и прикладное программное обеспечение и его конфигурация и т.д.). Затем идентифицируются наиболее уязвимые места атакуемой системы, воздействие на которые приводит к нужному злоумышленнику результату. Злоумышленник пытается выявить все каналы взаимодействия цели атаки с другими узлами. Это позволит не только выбрать тип реализуемой атаки, но и источник ее реализации. Например, атакуемый узел взаимодействует с двумя серверами под управлением ОС Unix и Windows NT. С одним сервером атакуемый узел имеет доверенные отношения, а с другим - нет. От того, через какой сервер злоумышленник будет реализовывать нападение, зависит, какая атака будет задействована, какое средство реализации будет выбрано и т.д. Затем, в зависимости от полученной информации и желаемого результата, выбирается атака, дающая наибольший эффект. Например:
SYN Flood, Teardrop, UDP Bomb - для нарушения функционирования узла;
CGI-скрипт - для проникновения на узел и кражи информации;
PHF - для кражи файла паролей и удаленного подбора пароля и т.п.

Традиционные средства защиты, такие как межсетевые экраны или механизмы фильтрации в маршрутизаторах, вступают в действие лишь на втором этапе реализации атаки, совершенно "забывая" о первом и третьем. Это приводит к тому, что зачастую совершаемую атаку очень трудно остановить даже при наличии мощных и дорогих средств защиты. Пример тому - распределенные атаки. Логично было бы, чтобы средства защиты начинали работать еще на первом этапе, т.е. предотвращали бы возможность сбора информации об атакуемой системе. Это позволило бы если и не полностью предотвратить атаку, то хотя бы существенно усложнить работу злоумышленника. Традиционные средства также не позволяют обнаружить уже совершенные атаки и оценить ущерб после их реализации, т.е. не работают на третьем этапе реализации атаки. Следовательно, невозможно определить меры по предотвращению таких атак впредь.

В зависимости от желаемого результата нарушитель концентрируется на том или ином этапе реализации атаки. Например:
для отказа в обслуживании подробно анализируется атакуемая сеть, в ней выискиваются лазейки и слабые места;
для хищения информации основное внимание уделяется незаметному проникновению на атакуемые узлы при помощи обнаруженных ранее уязвимостей.

Рассмотрим основные механизмы реализации атак. Это необходимо для понимания методов обнаружения этих атак. Кроме того, понимание принципов действий злоумышленников - залог успешной обороны сети. 1. Сбор информации

Первый этап реализации атак - это сбор информации об атакуемой системе или узле. Он включает такие действия как определение сетевой топологии, типа и версии операционной системы атакуемого узла, а также доступных сетевых и иных сервисов и т.п. Эти действия реализуются различными методами.

Изучение окружения

На этом этапе нападающий исследует сетевое окружение вокруг предполагаемой цели атаки. К таким областям, например, относятся узлы Internet-провайдера "жертвы" или узлы удаленного офиса атакуемой компании. На этом этапе злоумышленник может пытаться определить адреса "доверенных" систем (например, сеть партнера) и узлов, которые напрямую соединены с целью атаки (например, маршрутизатор ISP) и т.д. Такие действия достаточно трудно обнаружить, поскольку они выполняются в течение достаточно длительного периода времени и снаружи области, контролируемой средствами защиты (межсетевыми экранами, системами обнаружения атак и т.п.).

Идентификация топологии сети

Существует два основных метода определения топологии сети, используемых злоумышленниками:

  • изменение TTL (TTL modulation),
  • запись маршрута (record route).
  • По первому методу работают программы traceroute для Unix и tracert для Windows. Они используют поле Time to Live ("время жизни") в заголовке IP-пакета, которое изменяется в зависимости от числа пройденных сетевым пакетом маршрутизаторов. Для записи маршрута ICMP-пакета может быть использована утилита ping . Зачастую сетевую топологию можно выяснить при помощи протокола SNMP, установленного на многих сетевых устройствах, защита которых неверно сконфигурирована. При помощи протокола RIP можно попытаться получить информацию о таблице маршрутизации в сети и т.д.

    Многие из этих методов используются современными системами управления (например, HP OpenView, Cabletron SPECTRUM, MS Visio и т.д.) для построения карт сети. И эти же методы могут быть с успехом применены злоумышленниками для построения карты атакуемой сети.

    Идентификация узлов

    Идентификация узла, как правило, осуществляется путем посылки при помощи утилиты ping команды ECHO_REQUEST протокола ICMP. Ответное сообщение ECHO_REPLY говорит о том, что узел доступен. Существуют свободно распространяемые программы, которые автоматизируют и ускоряют процесс параллельной идентификации большого числа узлов, например, fping или nmap. Опасность данного метода в том, что стандартными средствами узла запросы ECHO_REQUEST не фиксируются. Для этого необходимо применять средства анализа трафика, межсетевые экраны или системы обнаружения атак.

    Это самый простой метод идентификации узлов. Однако он имеет два недостатка.

  • Многие сетевые устройства и программы блокируют ICMP-пакеты и не пропускают их во внутреннюю сеть (или наоборот не пропускают их наружу). Например, MS Proxy Server 2.0 не разрешает прохождение пакетов по протоколу ICMP. В результате возникает неполная картина. С другой стороны, блокировка ICMP-пакета говорит злоумышленнику о наличии "первой линии обороны" - маршрутизаторов, межсетевых экранов и т.д.
  • Использование ICMP-запросов позволяет с легкостью обнаружить их источник, что, разумеется, не может входить в задачу злоумышленника.
  • Существует еще один метод идентификации узлов - использование "смешанного" режима сетевой карты, который позволяет определить различные узлы в сегменте сети. Но он не применим в тех случаях, в которых трафик сегмента сети недоступен нападающему со своего узла, т.е. этот метод применим только в локальных сетях. Другим способом идентификации узлов сети является так называемая разведка DNS, которая позволяет идентифицировать узлы корпоративной сети при помощи обращения к серверу службы имен.

    Идентификация сервисов или сканирование портов

    Идентификация сервисов, как правило, осуществляется путем обнаружения открытых портов (port scanning). Такие порты очень часто связаны с сервисами, основанными на протоколах TCP или UDP. Например:

    • открытый 80-й порт подразумевает наличие Web-сервера,
    • 25-й порт - почтового SMTP-сервера,
    • 31337-й - серверной части троянского коня BackOrifice,
    • 12345-й или 12346-й - серверной части троянского коня NetBus и т.д.
    Для идентификации сервисов и сканирования портов могут быть использованы различные программы, в т.ч. и свободно распространяемые. Например, nmap или netcat. Идентификация операционной системы

    Основной механизм удаленного определения ОС - анализ ответов на запросы, учитывающие различные реализации TCP/IP-стека в различных операционных системах. В каждой ОС по-своему реализован стек протоколов TCP/IP, что позволяет при помощи специальных запросов и ответов на них определить, какая ОС установлена на удаленном узле.

    Другой, менее эффективный и крайне ограниченный, способ идентификации ОС узлов - анализ сетевых сервисов, обнаруженных на предыдущем этапе. Например, открытый 139-й порт позволяет сделать вывод, что удаленный узел, вероятнее всего, работает под управлением ОС семейства Windows. Для определения ОС могут быть использованы различные программы. Например, nmap или queso.

    Определение роли узла

    Предпоследним шагом на этапе сбора информации об атакуемом узле является определение его роли, например, выполнении функций межсетевого экрана или Web-сервера. Выполняется этот шаг на основе уже собранной информации об активных сервисах, именах узлов, топологии сети и т.п. Например, открытый 80-й порт может указывать на наличие Web-сервера, блокировка ICMP-пакета указывает на потенциальное наличие межсетевого экрана, а DNS-имя узла proxy.domain.ru или fw.domain.ru говорит само за себя.

    Определение уязвимостей узла

    Последний шаг - поиск уязвимостей. На этом шаге злоумышленник при помощи различных автоматизированных средств или вручную определяет уязвимости, которые могут быть использованы для реализации атаки. В качестве таких автоматизированных средств могут быть использованы ShadowSecurityScanner, nmap, Retina и т.д. 2. Реализация атаки

    С этого момента начинается попытка доступа к атакуемому узлу. При этом доступ может быть как непосредственный, т.е. проникновение на узел, так и опосредованный, например, при реализации атаки типа "отказ в обслуживании". Реализация атак в случае непосредственного доступа также может быть разделена на два этапа:

    • проникновение;
    • установление контроля.
    Проникновение

    Проникновение подразумевает под собой преодоление средств защиты периметра (например, межсетевого экрана). Реализовываться это может быть различными путями. Например, использование уязвимости сервиса компьютера, "смотрящего" наружу или путем передачи враждебного содержания по электронной почте (макровирусы) или через апплеты Java. Такое содержание может использовать так называемые "туннели" в межсетевом экране (не путать с туннелями VPN), через которые затем и проникает злоумышленник. К этому же этапу можно отнести подбор пароля администратора или иного пользователя при помощи специализированной утилиты (например, L0phtCrack или Crack).

    Установление контроля

    После проникновения злоумышленник устанавливает контроль над атакуемым узлом. Это может быть осуществлено путем внедрения программы типа "троянский конь" (например, NetBus или BackOrifice). После установки контроля над нужным узлом и "заметания" следов, злоумышленник может осуществлять все необходимые несанкционированные действия дистанционно без ведома владельца атакованного компьютера. При этом установление контроля над узлом корпоративной сети должно сохраняться и после перезагрузки операционной системы. Это может быть реализовано путем замены одного из загрузочных файлов или вставка ссылки на враждебный код в файлы автозагрузки или системный реестр. Известен случай, когда злоумышленник смог перепрограммировать EEPROM сетевой карты и даже после переустановки ОС он смог повторно реализовать несанкционированные действия. Более простой модификацией этого примера является внедрение необходимого кода или фрагмента в сценарий сетевой загрузки (например, для ОС Novell Netware).

    Цели реализации атак

    Этапом завершения атаки является "заметание следов" со стороны злоумышленника. Обычно это реализуется путем удаления соответствующих записей из журналов регистрации узла и других действий, возвращающих атакованную систему в исходное, "предатакованное" состояние.

    Классификация атак

    Существуют различные типа классификации атак. Например, деление на пассивные и активные, внешние и внутренние, умышленные и неумышленные. Однако дабы не запутать вас большим разнообразием классификаций, мало применимыми на практике, предлагаю более "жизненную" классификацию:

  • Удаленное проникновение (remote penetration) . Атаки, которые позволяют реализовать удаленное управление компьютером через сеть. Например, NetBus или BackOrifice.
  • Локальное проникновение (local penetration) . Атака, которая приводит к получению несанкционированного доступа к узлу, на котором она запущена. Например, GetAdmin.
  • Удаленный отказ в обслуживании (remote denial of service) . Атаки, которые позволяют нарушить функционирование или перегрузить компьютер через Internet. Например, Teardrop или trin00.
  • Локальный отказ в обслуживании (local denial of service) . Атаки, которые позволяют нарушить функционирование или перегрузить компьютер, на котором они реализуются. Примером такой атаки является "враждебный" апплет, который загружает центральный процессор бесконечным циклом, что приводит к невозможности обработки запросов других приложений.
  • Сетевые сканеры (network scanners) . Программы, которые анализируют топологию сети и обнаруживают сервисы, доступные для атаки. Например, система nmap.
  • Сканеры уязвимостей (vulnerability scanners) . Программы, которые ищут уязвимости на узлах сети и которые могут быть использованы для реализации атак. Например, система SATAN или ShadowSecurityScanner.
  • Взломщики паролей (password crackers) . Программы, которые "подбирают" пароли пользователей. Например, L0phtCrack для Windows или Crack для Unix.
  • Анализаторы протоколов (sniffers) . Программы, которые "прослушивают" сетевой трафик. При помощи этих программ можно автоматически искать такую информацию, как идентификаторы и пароли пользователей, информацию о кредитных картах и т.д. Например, Microsoft Network Monitor, NetXRay компании Network Associates или LanExplorer.
  • Компания Internet Security Systems, Inc. еще больше сократила число возможных категорий, доведя их до 5:

  • Сбор информации (Information gathering).
  • Попытки несанкционированного доступа (Unauthorized access attempts).
  • Отказ в обслуживании (Denial of service).
  • Подозрительная активность (Suspicious activity).
  • Системные атаки (System attack).
  • Первые 4 категории относятся к удаленным атакам, а последняя - к локальным, реализуемом на атакуемом узле. Можно заметить, что в данную классификацию не попал целый класс так называемых "пассивных" атак ("прослушивание" трафика, "ложный DNS-сервер", "подмена ARP-сервера" и т.п.).

    Классификация атак, реализованная во многих системах обнаружения атак, не может быть категоричной. Например, атака, реализация которой для ОС Unix (например, переполнение буфера statd) может иметь самые плачевные последствия (самый высокий приоритет), для ОС Windows NT может быть вообще не применима или иметь очень низкую степень риска. Кроме того, существует неразбериха и в самих названиях атак и уязвимостей. Одна и та же атака, может иметь разные наименования у разных производителей систем обнаружения атак.

    Одной из лучших баз уязвимостей и атак является база данных X-Force, находящаяся по адресу: http://xforce.iss.net/. Доступ к ней может осуществляться как путем подписки на свободно распространяемый список рассылки X-Force Alert, так и путем интерактивного поиска в базе данных на Web-сервере компании ISS.

    Заключение

    Не будь уязвимостей в компонентах информационных систем, нельзя было бы реализовать многие атаки и, следовательно, традиционные системы защиты вполне эффективно справлялись бы с возможными атаками. Однако программы пишутся людьми, которым свойственно делать ошибки. Вследствие чего и появляются уязвимости, которые используются злоумышленниками для реализации атак. Однако это только полбеды. Если бы все атаки строились по модели "один к одному", то с некоторой натяжкой, но межсетевые экраны и другие защитные системы смогли бы противостоять и им. Но появились скоординированные атаки, против которых традиционные средства уже не так эффективны. И тут на сцене и появляются новые технологии - технологии обнаружения атак. Приведенная систематизация данные об атаках и этапах их реализации дает необходимый базис для понимания технологий обнаружения атак.

    Средства обнаружения компьютерных атак

    Технология обнаружения атак должна решать следующие задачи:

    • Распознавание известных атак и предупреждение о них соответствующего персонала.
    • "Понимание" зачастую непонятных источников информации об атаках.
    • Освобождение или снижение нагрузки на персонал, отвечающий за безопасность, от текущих рутинных операций по контролю за пользователями, системами и сетями, являющимися компонентами корпоративной сети.
    • Возможность управления средствами защиты не-экспертами в области безопасности.
    • Контроль всех действий субъектов корпоративной сети (пользователей, программ, процессов и т.д.).

    Очень часто системы обнаружения атак могут выполнять функции, существенно расширяющие спектр их применения. Например,

    • Контроль эффективности межсетевых экранов. Например, установка системы обнаружения атак после межсетевого экрана (внутри корпоративной сети) позволяет обнаружить атаки, пропускаемые МСЭ и, тем самым, определить недостающие правила на межсетевом экране.
    • Контроль узлов сети с неустановленными обновлениями или узлов с устаревшим программным обеспечением.
    • Блокирование и контроль доступа к определенным узлам Internet. Хотя системам обнаружения атак далеко до межсетевых экранов и систем контроля доступа к различным URL, например, WEBsweeper, они могут выполнять частичный контроль и блокирование доступа некоторых пользователей корпоративной сети к отдельным ресурсам Internet, например, к Web-серверам порнографического содержания. Это бывает необходимо тогда, когда в организации нет денег на приобретение и межсетевого экрана и системы обнаружение атак, и функции МСЭ разносятся между системой обнаружения атак, маршрутизатором и proxy-сервером. Кроме того, системы обнаружения атак могут контролировать доступ сотрудников к серверам на основе ключевых слов. Например, sex, job, crack и т.д.
    • Контроль электронной почты. Системы обнаружения атак могут использоваться для контроля неблагонадежных сотрудников, использующих электронную почту для выполнения задач, не входящих в их функциональные обязанности, например, рассылка резюме. Некоторые системы могут обнаруживать вирусы в почтовых сообщениях и, хотя до настоящих антивирусных систем им далеко, они все же выполняют эту задачу достаточно эффективно.

    Лучшее использование времени и опыта специалистов в области информационной безопасности заключается в обнаружении и устранении причин реализации атак, скорее чем, в обнаружении самих атак. Устранив причины возникновения атак, т.е. обнаружив и устранив уязвимости, администратор тем самым устраняет и сам факт потенциальной реализации атак. Иначе атака будет повторяться раз за разом, постоянно требуя усилий и внимания администратора.

    Классификация систем обнаружения атак

    Существует большое число различных классификаций систем обнаружения атак, однако самой распространенной является классификация по принципу реализации:

  • host-based , то есть обнаруживающие атаки, направленные на конкретный узел сети,
  • network-based , то есть обнаруживающие атаки, направленные на всю сеть или сегмент сети.
  • Системы обнаружения атак, контролирующие отдельный компьютер, как правило, собирают и анализируют информацию из журналов регистрации операционной системы и различных приложений (Web-сервер, СУБД и т.д.). По такому принципу функционирует RealSecure OS Sensor. Однако в последнее время стали получать распространение системы, тесно интегрированные с ядром ОС, тем самым, предоставляя более эффективный способ обнаружения нарушений политики безопасности. Причем такая интеграция может быть реализовано двояко. Во-первых, могут контролироваться все системные вызовы ОС (так работает Entercept) или весь входящий/исходящий сетевой трафик (так работает RealSecure Server Sensor). В последнем случае система обнаружения атак захватывает весь сетевой трафик напрямую с сетевой карты, минуя операционную систему, что позволяет уменьшить зависимость от нее и тем самым повысить защищенность системы обнаружения атак.

    Системы обнаружения атак уровня сети собирают информацию из самой сети, то есть из сетевого трафика. Выполняться эти системы могут на обычных компьютерах (например, RealSecure Network Sensor), на специализированных компьютерах (например, RealSecure for Nokia или Cisco Secure IDS 4210 и 4230) или интегрированы в маршрутизаторы или коммутаторы (например, CiscoSecure IOS Integrated Software или Cisco Catalyst 6000 IDS Module). В первых двух случаях анализируемая информация собирается посредством захвата и анализа пакетов, используя сетевые интерфейсы в беспорядочном (promiscuous) режиме. В последнем случае захват трафика осуществляется с шины сетевого оборудования.

    Обнаружение атак требует выполнения одного из двух условий - или понимания ожидаемого поведения контролируемого объекта системы или знания всех возможных атак и их модификаций. В первом случае используется технология обнаружения аномального поведения, а во втором случае - технология обнаружения злоумышленного поведения или злоупотреблений. Вторая технология заключается в описании атаки в виде шаблона или сигнатуры и поиска данного шаблона в контролируемом пространстве (например, сетевом трафике или журнале регистрации). Эта технология очень похожа на обнаружение вирусов (антивирусные системы являются ярким примером системы обнаружения атак), т.е. система может обнаружить все известные атаки, но она мало приспособлена для обнаружения новых, еще неизвестных, атак. Подход, реализованный в таких системах, очень прост и именно на нем основаны практически все предлагаемые сегодня на рынке системы обнаружения атак.

    Практически все системы обнаружения атак основаны на сигнатурном подходе.

    Достоинства систем обнаружения атак

    Можно долго перечислять различные достоинства систем обнаружения атак, функционирующих на уровне узла и сети. Однако я остановлюсь только на нескольких из них.

    Коммутация позволяет управлять крупномасштабными сетями, как несколькими небольшими сетевыми сегментами. В результате бывает трудно определить наилучшее место для установки системы, обнаруживающей атаки в сетевом трафике. Иногда могут помочь специальные порты (span ports) на коммутаторах, но не всегда. Обнаружение атак на уровне конкретного узла обеспечивает более эффективную работу в коммутируемых сетях, так как позволяет разместить системы обнаружения только на тех узлах, на которых это необходимо.

    Системы сетевого уровня не требуют, чтобы на каждом хосте устанавливалось программное обеспечение системы обнаружения атак. Поскольку для контроля всей сети число мест, в которых установлены IDS невелико, то стоимость их эксплуатации в сети предприятия ниже, чем стоимость эксплуатации систем обнаружения атак на системном уровне. Кроме того, для контроля сетевого сегмента, необходим только один сенсор, независимо от числа узлов в данном сегменте.

    Сетевой пакет, будучи ушедшим с компьютера злоумышленника, уже не может быть возвращен назад. Системы, функционирующие на сетевом уровне, используют "живой" трафик при обнаружении атак в реальном масштабе времени. Таким образом, злоумышленник не может удалить следы своей несанкционированной деятельности. Анализируемые данные включают не только информацию о методе атаки, но и информацию, которая может помочь при идентификации злоумышленника и доказательстве в суде. Поскольку многие хакеры хорошо знакомы с механизмами системной регистрации, они знают, как манипулировать этими файлами для скрытия следов своей деятельности, снижая эффективность систем системного уровня, которым требуется эта информация для того, чтобы обнаружить атаку.

    Системы, функционирующие на уровне сети, обнаруживают подозрительные события и атаки по мере того, как они происходят, и поэтому обеспечивают гораздо более быстрое уведомление и реагирование, чем системы, анализирующие журналы регистрации. Например, хакер, инициирующий сетевую атаку типа "отказ в обслуживании" на основе протокола TCP, может быть остановлен системой обнаружения атак сетевого уровня, посылающей TCP-пакет с установленным флагом Reset в заголовке для завершения соединения с атакующим узлом, прежде чем атака вызовет разрушения или повреждения атакуемого узла. Системы анализа журналов регистрации не распознают атаки до момента соответствующей записи в журнал и предпринимают ответные действия уже после того, как была сделана запись. К этому моменту наиболее важные системы или ресурсы уже могут быть скомпрометированы или нарушена работоспособность системы, запускающей систему обнаружения атак на уровне узла. Уведомление в реальном масштабе времени позволяет быстро среагировать в соответствии с предварительно определенными параметрами. Диапазон этих реакций изменяется от разрешения проникновения в режиме наблюдения для того, чтобы собрать информацию об атаке и атакующем, до немедленного завершения атаки.

    И, наконец, системы обнаружения атак, функционирующие на сетевом уровне, не зависят от операционных систем, установленных в корпоративной сети, так как они оперируют сетевым трафиком, которым обмениваются все узлы в корпоративной сети. Системе обнаружения атак все равно, какая ОС сгенерировала тот или иной пакет, если он в соответствие со стандартами, поддерживаемыми системой обнаружения. Например, в сети могут работать ОС Windows 98, Windows NT, Windows 2000 и XP, Netware, Linux, MacOS, Solaris и т.д., но если они общаются между собой по протоколу IP, то любая из систем обнаружения атак, поддерживающая этот протокол, сможет обнаруживать атаки, направленные на эти ОС.

    Совместное применение систем обнаружения атак на уровне сети и уровне узла повысит защищенность вашей сети.

    Сетевые системы обнаружения атак и межсетевые экраны

    Наиболее часто сетевые системы обнаружения атак пытаются заменить межсетевыми экранами, уповая на то, что последние обеспечивают очень высокий уровень защищенности. Однако не стоит забывать, что межсетевые экраны - это просто системы, основанные на правилах, которые разрешают или запрещают прохождение трафика через них. Даже межсетевые экраны, построенные по технологии "", не позволяют с уверенностью сказать, присутствует ли атака в контролируемом ими трафике или нет. Они могут сказать, соответствует ли трафик правилу или нет. Например, МСЭ сконфигурирован так, чтобы блокировать все соединения кроме TCP-соединений на 80 порту (то есть HTTP-трафик). Таким образом, любой трафик через 80-ый порт законен с точки зрения МСЭ. С другой стороны, система обнаружения атак также контролирует трафик, но ищет в нем признаки атаки. Ее мало заботит, для какого порта предназначен трафик. По умолчанию весь трафик для системы обнаружения атак подозрителен. То есть, несмотря на то, что система обнаружения атак работает с тем же источником данных, что и МСЭ, то есть с сетевым трафиком, они выполняют дополняющие друг друга функции. Например, HTTP-запрос "GET /../../../etc/passwd HTTP/1.0". Практически любой МСЭ разрешает прохождение данного запроса через себя. Однако система обнаружения атак легко обнаружит эту атаку и блокирует ее.

    Можно провести следующую аналогию. Межсетевой экран - это обычный турникет, устанавливаемый на главном входе в вашу сеть. Но помимо главных дверей существуют и другие двери, а также окна. Маскируясь под реального сотрудника или войдя в доверие к охраннику на турникете, злоумышленник может пронести сквозь турникет взрывное устройство или пистолет. Мало того. Злоумышленник может залезть к вам через окно. Именно поэтому и нужны системы обнаружения атак, которые усиливают защиту, обеспечиваемую межсетевыми экранами, которые являются пусть и необходимым, но явно недостаточным элементом сетевой безопасности.

    Межсетевой экран - не панацея!

    Варианты реакций на обнаруженную атаку

    Мало обнаружить атаку, - необходимо на нее соответствующим образом отреагировать. Именно варианты реагирования во многом определяют эффективность системы обнаружения атак. На сегодняшний день предлагаются следующие варианты реагирования:

    • Уведомление на консоль (включая резервную) системы обнаружения атак или на консоль интегрированной системы (например, межсетевого экрана).
    • Звуковое оповещение об атаке.
    • Генерация управляющих последовательностей SNMP для систем сетевого управления.
    • Генерация сообщения об атаке по электронной почте.
    • Дополнительные уведомления на пейджер или факс. Очень интересная, хотя и редко применяемая возможность. Оповещение об обнаружении несанкционированной деятельности посылается не администратору, а злоумышленнику. По мнению сторонников данного варианта реагирования, нарушитель, узнав, что его обнаружили, вынужден прекратить свои действия.
    • Обязательная регистрация обнаруживаемых событий. В качестве журнала регистрации могут выступать:
      • текстовый файл,
      • системный журнал (например, в системе Cisco Secure Integrated Software),
      • текстовый файл специального формата (например, в системе Snort),
      • локальная база данных MS Access,
      • SQL-база данных (например, в системе RealSecure).
      Надо только учитывать, что объемы регистрируемой информации требуют, как правило, SQL-базу - MS SQL или Oracle.
    • Трассировка событий (event trace), т.е. запись их в той последовательности и с той скоростью, с которыми их реализовывал злоумышленник. Затем администратор в любое заданное время может прокрутить (replay или playback) необходимую последовательность событий с заданной скоростью (в реальном режиме времени, с ускорением или замедлением), чтобы проанализировать деятельность злоумышленника. Это позволит понять его квалификацию, используемые средства атаки и т.д.
    • Прерывание действий атакующего, т.е. завершение соединения. Это можно сделать, как:
      • перехват соединения (session hijacking) и посылка пакета с установленным флагом RST обоим участникам сетевого соединения от имени каждого из них (в системе обнаружения атак, функционирующей на уровне сети);
      • блокировка учетной записи пользователя, осуществляющего атаку (в системе обнаружения атак на уровне узла). Такая блокировка может быть осуществлена либо на заданный промежуток времени, либо до тех пор, пока учетная запись не будет разблокирована администратором. В зависимости от привилегий, с которыми запущена система обнаружения атак, блокировка может действовать как в пределах самого компьютера, на который направлена атака, так и в пределах всего домена сети.
    • Реконфигурация сетевого оборудования или межсетевых экранов. В случае обнаружения атаки на маршрутизатор или межсетевой экран посылается команда на изменение списка контроля доступа. Впоследствии все попытки соединения с атакующего узла будут отвергаться. Как и блокировка учетной записи злоумышленника, изменение списка контроля доступа может быть осуществлено или на заданный интервал времени или до того момента, как изменение будет отменено администратором реконфигурируемого сетевого оборудования.
    • Блокирование сетевого трафика так, как это реализовано в межсетевых экранах. Этот вариант позволяет ограничить трафик, а также адресатов, которые могут получить доступ к ресурсам защищаемого компьютера, позволяя выполнять функции доступные в персональных межсетевых экранах.
    Виды обнаруживаемых сетевых атак

    В настоящее время существует множество различных видов сетевых атак. Эти атаки используют уязвимости операционной системы, а также иного установленного программного обеспечения системного и прикладного характера.

    Чтобы своевременно обеспечивать безопасность компьютера, важно знать, какого рода сетевые атаки могут ему угрожать. Известные сетевые атаки можно условно разделить на три большие группы:

    • Сканирование портов – этот вид угроз сам по себе не является атакой, но обычно предшествует ей, поскольку это один из основных способов получить сведения об удаленном компьютере. Данный способ заключается в сканировании UDP- / TCP-портов, используемых сетевыми сервисами на интересующем злоумышленника компьютере, для выяснения их состояния (закрытые или открытые порты).

      Сканирование портов позволяет понять, какие типы атак на данную систему могут оказаться удачными, а какие нет. Кроме того, полученная в результате сканирования информация (“слепок” системы) даст злоумышленнику представление о типе операционной системы на удаленном компьютере. Это еще более ограничивает круг потенциальных атак и, соответственно, время, затрачиваемое на их проведение, а также позволяет использовать специфические для данной операционной системы уязвимости.

    • DoS-атаки , или атаки, вызывающие отказ в обслуживании, – это атаки, в результате которых атакуемая система приводится в нестабильное либо полностью нерабочее состояние. Последствиями такого типа атак может стать отсутствие возможности использовать информационные ресурсы, на которые они направлены (например, невозможность доступа в интернет).

      Существует два основных типа DoS-атак:

      • отправка компьютеру-жертве специально сформированных пакетов, не ожидаемых этим компьютером, что приводит к перезагрузке или остановке системы;
      • отправка компьютеру-жертве большого количества пакетов в единицу времени, которые этот компьютер не в состоянии обработать, что приводит к исчерпанию ресурсов системы.

      Яркими примерами данной группы атак могут служить следующие:

      • Атака Ping of death – состоит в посылке ICMP-пакета, размер которого превышает допустимое значение в 64 КБ. Эта атака может привести к аварийному завершению работы некоторых операционных систем.
      • Атака Land – заключается в передаче на открытый порт вашего компьютера запроса на установление соединения с самим собой. Атака приводит к зацикливанию компьютера, в результате чего сильно возрастает загрузка процессора, а кроме того, возможно аварийное завершение работы некоторых операционных систем.
      • Атака ICMP Flood – заключается в отправке на ваш компьютер большого количества ICMP-пакетов. Атака приводит к тому, что компьютер вынужден отвечать на каждый поступивший пакет, в результате чего сильно возрастает загрузка процессора.
      • Атака SYN Flood – заключается в отправке на ваш компьютер большого количества запросов на установку соединения. Система резервирует определенные ресурсы для каждого из таких соединений, в результате чего полностью расходует свои ресурсы и перестает реагировать на другие попытки соединения.
    • Атаки-вторжения , целью которых является “захват” системы. Это самый опасный тип атак, поскольку в случае их успешного выполнения система полностью переходит под контроль злоумышленника.

      Данный тип атак применяется, когда злоумышленнику необходимо получить конфиденциальную информацию с удаленного компьютера (например, номера кредитных карт, пароли) либо просто закрепиться в системе для последующего использования ее вычислительных ресурсов в своих целях (использование захваченной системы в зомби-сетях либо как плацдарма для новых атак).

      В эту группу входит самое большое количество атак. Их можно разделить на три подгруппы в зависимости от установленной на компьютер пользователя операционной системы: атаки на Microsoft Windows, атаки на Unix, а также общая группа для сетевых сервисов, использующихся в обеих операционных системах.

      Наиболее распространенные виды атак, использующих сетевые сервисы операционной системы:

      • Атаки на переполнение буфера . Переполнение буфера возникает из-за отсутствия контроля (либо в случае его недостаточности) при работе с массивами данных. Это один из самых ст
        арых типов уязвимостей; он наиболее прост для эксплуатации злоумышленником.
      • Атаки, основанные на ошибках форматных строк . Ошибки форматных строк возникают из-за недостаточного контроля значений входных параметров функций форматного ввода-вывода типа printf() , fprintf() , scanf() и прочих из стандартной библиотеки языка Си. Если подобная уязвимость присутствует в программном обеспечении, то злоумышленник, имеющий возможность посылать специальным образом сформированные запросы, может получить полный контроль над системой.

        Система обнаружения вторжений автоматически анализирует и предотвращает использование подобных уязвимостей в наиболее распространенных сетевых сервисах (FTP, POP3, IMAP), если они функционируют на компьютере пользователя.

      • Атаки, ориентированные на компьютеры с установленной операционной системой Microsoft Windows, основаны на использовании уязвимостей установленного на компьютере программного обеспечения (например, таких программ, как Microsoft SQL Server, Microsoft Internet Explorer, Messenger, а также системных компонентов, доступных по сети, – DCom, SMB, Wins, LSASS, IIS5).

      Кроме того, частными случаями атак-вторжений можно назвать использование различного вида вредоносных скриптов, в том числе скриптов, обрабатываемых Microsoft Internet Explorer, а также разновидности червя Helkern. Суть атаки последнего типа заключается в отправке на удаленный компьютер UDP-пакета специального вида, способного выполнить вредоносный код.

    В лекции рассматриваются некоторые виды атак на информационные ресурсы предприятия, использующие определенные уязвимости. Довольно часто входной точкой для атаки служит общедоступный интернет сайт, используя который злоумышленник может получить доступ к областям сайта, предназначенным для ограниченного числа лиц, и к закрытым данным.

    Подбор – автоматизированный процесс проб и ошибок, использующийся для того, чтобы угадать имя пользователя, пароль, номер кредитной карточки, ключ шифрования и т.д. Существует два вида подбора: прямой и обратный. При прямом подборе используются различные варианты пароля для одного имени пользователя. При обратном перебираются различные имена пользователей, а пароль остается неизменным.

    Традиционным методом борьбы с подбором пароля является, ограничение на количество ошибочных вводов пароля. Существует множество вариантов реализаций этой идеи, от самых простых – статическое ограничение, например не более трех ошибок, до сложно реализованных динамических, с увеличивающимся промежутком времени запрета между запросами.

    Небезопасное восстановление паролей. Эта уязвимость возникает, когда Веб-сервер позволяет атакующему несанкционированно получать, модифицировать или восстанавливать пароли других пользователей. Например, многие серверы требуют от пользователя указать его email в комбинации с домашним адресом и номером телефона. Эта информация может быть легко получена из сетевых справочников. В результате, данные, используемые для проверки, не являются большим секретом. Кроме того, эта информация может быть получена злоумышленником с использованием других методов, таких как межсайтовое выполнение сценариев или фишинг (phishing).

    Наиболее эффективным является следующее решение: пользователь нажимает кнопку "Восстановить пароль" и попадает на страницу, где у него спрашивают его логин в системе и почтовый ящик, указанный при регистрации. Далее на почтовый ящик высылается уведомление о запросе восстановления пароля и уникальная псевдослучайно сгенерированная ссылка на страницу смены пароля. В таком случае пароль изменить может действительно только владелец почтового ящика, на который зарегистрирован аккаунт.

    Недостаточная авторизация. Возникает, когда Веб-сервер позволяет атакующему получать доступ к важной информации или функциям, доступ к которым должен быть ограничен. То, что пользователь прошел аутентификацию не означает, что он должен получить доступ ко всем функциям и содержимому сервера.

    Например, некоторые серверы, после аутентификации, сохраняют в cookie или скрытых полях идентификатор "роли" пользователя в рамках Веб-приложения. Если разграничение доступа основывается на проверке данного параметра без верификации принадлежности к роли при каждом запросе, злоумышленник может повысить свои привилегии, просто модифицировав значение cookie. Методы борьбы – четкое разграничение прав пользователей и их возможностей.



    Отсутствие таймаута сессии. В случае если для идентификатора сессии или учетных данных не предусмотрен таймаут или его значение слишком велико, злоумышленник может воспользоваться старыми данными для авторизации.

    Например, при использовании публичного компьютера, когда несколько пользователей имеют неограниченный физический доступ к машине, отсутствие таймаута сессии позволяет злоумышленнику просматривать страницы, посещенные другим пользователем. Метод борьбы – ограничение таймаута сессии.

    Межсайтовое выполнение сценариев (Cross-site Scripting, XSS). Наличие уязвимости XSS позволяет атакующему передать серверу исполняемый код, который будет перенаправлен браузеру пользователя. Этот код обычно создается на языках HTML/JavaScript, но могут быть использованы VBScript, ActiveX, Java, Flash, или другие поддерживаемые браузером технологии. Переданный код исполняется в контексте безопасности (или зоне безопасности) уязвимого сервера. Используя эти привилегии, код получает возможность читать, модифицировать или передавать важные данные, доступные с помощью браузера.

    Существует два типа атак, приводящих к межсайтовому выполнению сценариев: постоянные (сохраненные) и непостоянные (отраженные). Основным отличием между ними является то, что в отраженном варианте передача кода серверу и возврат его клиенту осуществляется в рамках одного HTTP-запроса, а в хранимом – в разных. Осуществление непостоянной атаки требует, чтобы пользователь перешел по ссылке, сформированной злоумышленником (ссылка может быть передана по email, ICQ и т.д.). В процессе загрузки сайта код, внедренный в URL или заголовки запроса, будет передан клиенту и выполнен в его браузере. Сохраненная разновидность уязвимости возникает, когда код передается серверу и сохраняется на нем на некоторый промежуток времени. Наиболее популярными целями атак в этом случае являются форумы, почта с Веб-интерфейсом и чаты. Для атаки пользователю не обязательно переходить по ссылке, достаточно посетить уязвимый сайт.

    Проверить сайт на XSS уязвимость можно, передав в любое поле ввода HTML-код, содержащий JavaScript. Например:

    ">alert()

    Если появится диалоговое окно, то JavaScript alert() выполнился, а значит, может выполниться любой вредоносный код.

    На данный момент самый распространенный вид атаки, в связи с ростом популярности Веб 2.0 интернет наполнился различными формами обратной связи, к сожалению многие из них не фильтруются должным образом, особую сложность представляют формы, в которых разрешены некоторые теги или какие-либо конструкции форматирования, защитится же от XSS можно только путем тщательного анализа и фильтрации пришедших в запросах данных.

    Внедрение операторов SQL (SQL Injection). Эти атаки направлены на Веб-серверы, создающие SQL запросы к серверам СУБД на основе данных, вводимых пользователем. Если информация, полученная от клиента, должным образом не верифицируется, атакующий получает возможность модифицировать запрос к SQL-серверу, отправляемый приложением. Запрос будет выполняться с тем же уровнем привилегий, с каким работает компонент приложения, выполняющий запрос (сервер СУБД, Веб-сервер и т.д). В результате злоумышленник может получить полный контроль на сервере СУБД и даже его операционной системой.

    Возможность атаки возникает, когда SQL запрос к базе данных формируется в коде Веб-страницы посредством сложения основной части и переданного пользователем значением. Например, в коде Веб-страницы присутствует следующий код:

    “Select * from Students where firstneme = ” + name + “; “

    При стандартном варианте использования, запрос должен вернуть всю информацию из таблицы Students для учеников с именем, хранящимся в переменной name. Но что произойдет, если вместо имени переменная name будет содержать SQL-запрос, модифицирующий данные и схему базы данных?

    Еще один пример из области автоматического распознавания автомобильных номеров:

    Средства борьбы – грамотная фильтрация получаемых данных, разграничение прав доступа к базе данных.

    Отказ в обслуживании (Denial of Service, DoS). Данный класс атак направлен на нарушение доступности Веб-сервера. Обычно атаки, направленные на отказ в обслуживании реализуются на сетевом уровне, однако они могут быть направлены и на прикладной уровень. Используя функции Веб-приложения, злоумышленник может исчерпать критичные ресурсы системы, или воспользоваться уязвимостью, приводящий к прекращению функционирования системы. Обычно DoS атаки направлены на исчерпание критичных системных ресурсов, таких как вычислительные мощности, оперативная память, дисковое пространство или пропускная способность каналов связи. Если какой-то из ресурсов достигнет максимальной загрузки, приложение целиком будет недоступно.Атаки могут быть направлены на любой из компонентов Веб-приложения, например, такие как сервер СУБД, сервер аутентификации и т.д.

    Средствами защиты является оптимизация кода и ввод ограничений на количество посылаемых данных в единицу времени.

    Доп. литература: http://www.intuit.ru/department/internet/mwebtech/

    Виды атак

    Проникновение в компьютерную сеть осуществляется в форме атак.

    Атака – это такое событие, при котором посторонние лица пытаются проникнуть внутрь чужых сетей. Современная сетевая атака зачастую предполагает использование уязвимых мест программного обеспечения. Одними из распространенных в начале 2000-х годов были точечные атаки по типу «отказ в обслуживании», DoS (Dental of Service) и распределенные атаки DDoS (Distributed DoS). Атака DoS делает объект нападения недоступным для обычного применения за счет превышения допустимых пределов функционирования такого сетевого устройства. DoS – атака относится к точечной (сосредоточенной), так как поступает от одного источника. В случае распределенной DDoS, нападение осуществляется из множества источников, распределенных в пространстве, зачастую принадлежащим к различным сетям. Несколько лет назад стал применяться термин вредоносный программный код ВПК, который обозначает вирусы, черви, троянские системы, средства для сетевых атак, рассылку спама и другие нежелательные для пользователя действия. Учитывая разнообразный характер угроз, современные системы защиты стали многоуровневыми и приобрели комплексный характер. Сетевые черви распространяют свои копии по компьютерным сетям с помощью электронной почты, обмена сообщениями. Наиболее распространенные сегодня троянские программы, совершающие несанкционированные действия: они разрушают данные, используют ресурсы компьютеров в злонамеренных целях. К числу наиболее опасных троянских программ относятся шпионское программное обеспечения. Оно собирает информацию о всех действиях пользователя, а затем незаметно для него передает эту информацию злоумышленникам. Год 2007 можно назвать годом «смерти» некоммерческих вредоносных программ. Никто уже не разрабатывает эти программы для самовыражения. Можно отметить, что в 2007 году ни одна вредоносная программа не имела бы под собой финансовой подоплеки. Одной из новых вредоносных программ считается «Штормовой червь» (Storm Worm), который появился в январе 2007 года. Для распространения червь использовал как традиционные возможности, например, e-mail, так и распространение в виде видеофайлов. Техника сокрытия своего присутствия в системе (руткиты) могут применяться не только в троянских программах, но и в файловых вирусах. Вредоносные программы теперь стремятся выжить в системе даже после их обнаружения.

    Одним из опасных способов сокрытия их присутствия - использование технологии заражения загрузочного сектора жесткого диска – так называемые «буткиты». Такая вредоносная программа может получить управление еще до загрузки основной части ОС.

    Круг проблем безопасности уже не ограничивается задачей защиты от вирусов, с которыми приходилось сталкиваться примерно пять лет назад. Опасность внутренних утечек в информации стала более серьезной, чем внешние угрозы. Кроме того, с началом XXI века целью компьютерной преступности стало хищение экономической информации, банковых счетов, нарушение работоспособности информационных систем конкурентов, массовая рассылка рекламы. Не меньшую, а порой даже большую угрозу для корпоративных IT-систем представляют инсайдеры – работники компаний, имеющие доступ к конфиденциальной информации и использующие ее в неблагоприятных целях. Многие эксперты считают, что ущерб, наносимый инсайдерами не менее значительный, чем приносимый вредоносным ПО. Характерно, что значительная часть утечек информации происходит не по вине злоумышленных действий сотрудников, а из-за их невнимательности. Главными техническими средствами борьбы с подобными факторами должны быть средства аутентификации и администрирования доступа к данным. Тем не менее, число инцидентов продолжает расти (за последние годы примерно на 30% в год). Постепенно средства защиты от утечек/инсайдеров начинают интегрироваться в общую систему защиты информации. В заключении приведем обобщенную классификацию сетевых угроз (Рис. 11.3)