Тарифы Услуги Сим-карты

Технологии создания корпоративных интернет-решений. Классификация стандартных серверов. Код, интерпретируемый браузером

Цель лекции: показать, каким образом в веб-технологиях реализуются общие принципы клиент-серверных технологий. Рассмотреть ключевые элементы базового протокола HTTP.

Предметом данного курса являются технологии глобальной сети World Wide Web (сокращенно WWW или просто Web). На русском языке распространенным вариантом является название "Веб".

В частности, в рамках курса будут рассмотрены такие вопросы как: базовые стандарты и протоколы сети Веб, языки разметки и программирования веб-страниц, инструменты разработки и управления веб-контента и приложений для Веб, средства интеграции веб-контента и приложений в Веб.

Сеть Веб представляет собой глобальное информационное пространство, основанное на физической инфраструктуре Интернета и протоколе передачи данных HTTP. Зачастую, говоря об Интернете, подразумевают именно сеть Веб .

Клиент-серверные технологии Веб

Базовым протоколом сети гипертекстовых ресурсов Веб является протокол HTTP. В его основу положено взаимодействие "клиент-сервер ", то есть предполагается, что:

    Потребитель-клиент инициировав соединение с поставщиком-сервером посылает ему запрос;

    Поставщик-сервер , получив запрос, производит необходимые действия и возвращает обратно клиенту ответ с результатом.

При этом возможны два способа организации работы компьютера-клиента:

    Тонкий клиент - это компьютер-клиент, который переносит все задачи по обработке информации на сервер. Примером тонкого клиента может служить компьютер с браузером, использующийся для работы с веб-приложениями.

    Толстый клиент , напротив, производит обработку информации независимо от сервера, использует последний в основном лишь для хранения данных.

Прежде чем перейти к конкретным клиент-серверным веб-технологиям, рассмотрим основные принципы и структуру базового протокола HTTP.

Протокол http

HTTP (HyperText Transfer Protocol - RFC 1945, RFC 2616) - протокол прикладного уровня для передачи гипертекста.

Центральным объектом в HTTP является ресурс , на который указывает URI в запросе клиента. Обычно такими ресурсами являются хранящиеся на сервере файлы. Особенностью протокола HTTP является возможность указать в запросе и ответе способ представления одного и того же ресурса по различным параметрам: формату, кодировке, языку и т. д. Именно благодаря возможности указания способа кодирования сообщения клиент и сервер могут обмениваться двоичными данными, хотя изначально данный протокол предназначен для передачи символьной информации. На первый взгляд это может показаться излишней тратой ресурсов. Действительно, данные в символьном виде занимают больше памяти, сообщения создают дополнительную нагрузку на каналы связи, однако подобный формат имеет много преимуществ. Сообщения, передаваемые по сети, удобочитаемы, и, проанализировав полученные данные, системный администратор может легко найти ошибку и устранить ее. При необходимости роль одного из взаимодействующих приложений может выполнять человек, вручную вводя сообщения в требуемом формате.

В отличие от многих других протоколов, HTTP является протоколом без памяти. Это означает, что протокол не хранит информацию о предыдущих запросах клиентов и ответах сервера. Компоненты, использующие HTTP, могут самостоятельно осуществлять сохранение информации о состоянии, связанной с последними запросами и ответами. Например, клиентское веб-приложение, посылающее запросы, может отслеживать задержки ответов, а веб-сервер может хранить IP-адреса и заголовки запросов последних клиентов.

Всё программное обеспечение для работы с протоколом HTTP разделяется на три основные категории:

    Серверы - поставщики услуг хранения и обработки информации (обработка запросов).

    Клиенты - конечные потребители услуг сервера (отправка запросов).

    Прокси-серверы для поддержки работы транспортных служб.

"Классическая" схема HTTP-сеанса выглядит так.

    Установление TCP-соединения.

    Запрос клиента.

    Ответ сервера.

    Разрыв TCP-соединения.

Таким образом, клиент посылает серверу запрос, получает от него ответ, после чего взаимодействие прекращается. Обычно запрос клиента представляет собой требование передать HTML-документ или какой-нибудь другой ресурс, а ответ сервера содержит код этого ресурса.

В состав HTTP-запроса, передаваемого клиентом серверу, входят следующие компоненты.

    Строка состояния (иногда для ее обозначения используют также термины строка-статус, или строка запроса).

    Поля заголовка.

    Пустая строка.

    Тело запроса.

Строку состояния вместе с полями заголовка иногда называют также заголовком запроса .

Рис. 1.1. Структура запроса клиента.

Строка состояния имеет следующий формат:

метод_запроса URL_pecypca версия_протокола_НТТР

Рассмотрим компоненты строки состояния, при этом особое внимание уделим методам запроса.

Метод , указанный в строке состояния, определяет способ воздействия на ресурс, URL которого задан в той же строке. Метод может принимать значения GET, POST, HEAD, PUT, DELETE и т.д. Несмотря на обилие методов, для веб-программиста по-настоящему важны лишь два из них: GET и POST.

    GET. Согласно формальному определению, метод GET предназначается для получения ресурса с указанным URL. Получив запрос GET, сервер должен прочитать указанный ресурс и включить код ресурса в состав ответа клиенту. Ресурс, URL которого передается в составе запроса, не обязательно должен представлять собой HTML-страницу, файл с изображением или другие данные. URL ресурса может указывать на исполняемый код программы, который, при соблюдении определенных условий, должен быть запущен на сервере. В этом случае клиенту возвращается не код программы, а данные, сгенерированные в процессе ее выполнения. Несмотря на то что, по определению, метод GET предназначен для получения информации, он может применяться и в других целях. Метод GET вполне подходит для передачи небольших фрагментов данных на сервер.

    POST. Согласно тому же формальному определению, основное назначение метода POST - передача данных на сервер. Однако, подобно методу GET, метод POST может применяться по-разному и нередко используется для получения информации с сервера. Как и в случае с методом GET, URL, заданный в строке состояния, указывает на конкретный ресурс. Метод POST также может использоваться для запуска процесса.

    Методы HEAD и PUT являются модификациями методов GET и POST.

Версия протокола HTTP , как правило, задается в следующем формате:

HTTP/версия.модификация

Поля заголовка , следующие за строкой состояния, позволяют уточнять запрос, т.е. передавать серверу дополнительную информацию. Поле заголовка имеет следующий формат:

Имя_поля: Значение

Назначение поля определяется его именем, которое отделяется от значения двоеточием.

Имена некоторых наиболее часто встречающихся в запросе клиента полей заголовка и их назначение приведены в табл. 1.1 .

Таблица 1.1. Поля заголовка запроса HTTP.

Поля заголовка HTTP-запроса

Значение

Доменное имя или IP-адрес узла, к которому обращается клиент

URL документа, который ссылается на ресурс, указанный в строке состояния

Адрес электронной почты пользователя, работающего с клиентом

MIME-типы данных, обрабатываемых клиентом. Это поле может иметь несколько значений, отделяемых одно от другого запятыми. Часто поле заголовка Accept используется для того, чтобы сообщить серверу о том, какие типы графических файлов поддерживает клиент

Набор двухсимвольных идентификаторов, разделенных запятыми, которые обозначают языки, поддерживаемые клиентом

Перечень поддерживаемых наборов символов

MIME-тип данных, содержащихся в теле запроса (если запрос не состоит из одного заголовка)

Число символов, содержащихся в теле запроса (если запрос не состоит из одного заголовка)

Присутствует в том случае, если клиент запрашивает не весь документ, а лишь его часть

Используется для управления TCP-соединением. Если в поле содержится Close, это означает, что после обработки запроса сервер должен закрыть соединение. Значение Keep-Alive предлагает не закрывать TCP-соединение, чтобы оно могло быть использовано для последующих запросов

Информация о клиенте

Во многих случаях при работе в Веб тело запроса отсутствует. При запуске CGI-сценариев данные, передаваемые для них в запросе, могут размещаться в теле запроса.

Ниже представлен пример HTML-запроса, сгенерированного браузером

GET http://oak.oakland.edu/ HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/4.04 (Win95; I)

Host: oak.oakland.edu

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*

Accept-Language: en

Accept-Charset: iso-8859-l,*,utf-8

Получив от клиента запрос, сервер должен ответить ему. Знание структуры ответа сервера необходимо разработчику веб-приложений, так как программы, которые выполняются на сервере, должны самостоятельно формировать ответ клиенту.

Подобно запросу клиента, ответ сервера также состоит из четырех перечисленных ниже компонентов.

    Строка состояния.

    Поля заголовка.

    Пустая строка.

    Тело ответа.

Ответ сервера клиенту начинается со строки состояния, которая имеет следующий формат:

Версия_протокола Код_ответа Пояснительное_сообщение

    Версия_протокола задается в том же формате, что и в запросе клиента, и имеет тот же смысл.

    Код_ответа - это трехзначное десятичное число, представляющее в закодированном виде результат обслуживания запроса сервером.

    Пояснительное_сообщение дублирует код ответа в символьном виде. Это строка символов, которая не обрабатывается клиентом. Она предназначена для системного администратора или оператора, занимающегося обслуживанием системы, и является расшифровкой кода ответа.

Из трех цифр, составляющих код ответа, первая (старшая) определяет класс ответа, остальные две представляют собой номер ответа внутри класса. Так, например, если запрос был обработан успешно, клиент получает следующее сообщение:

HТТР/1.0 200 ОК

Как видно, за версией протокола HTTP 1.0 следует код 200. В этом коде символ 2 означает успешную обработку запроса клиента, а остальные две цифры (00) - номер данного сообщения.

В используемых в настоящее время реализациях протокола HTTP первая цифра не может быть больше 5 и определяет следующие классы ответов.

    1 - специальный класс сообщений, называемых информационными. Код ответа, начинающийся с 1, означает, что сервер продолжает обработку запроса. При обмене данными между HTTP-клиентом и HTTP-сервером сообщения этого класса используются достаточно редко.

    2 - успешная обработка запроса клиента.

    3 - перенаправление запроса. Чтобы запрос был обслужен, необходимо предпринять дополнительные действия.

    4 - ошибка клиента. Как правило, код ответа, начинающийся с цифры 4, возвращается в том случае, если в запросе клиента встретилась синтаксическая ошибка.

    5 - ошибка сервера. По тем или иным причинам сервер не в состоянии выполнить запрос.

Примеры кодов ответов, которые клиент может получить от сервера, и поясняющие сообщения приведены в табл. 1.2.

Таблица 1.2. Классы кодов ответа сервера.

Расшифровка

Интерпретация

Часть запроса принята, и сервер ожидает от клиента продолжения запроса

Запрос успешно обработан, и в ответе клиента передаются данные, указанные в запросе

В результате обработки запроса был создан новый ресурс

Запрос принят сервером, но обработка его не окончена. Данный код ответа не гарантирует, что запрос будет обработан без ошибок.

Partial Content

Сервер возвращает часть ресурса в ответ на запрос, содержавший поле заголовка Range

Multiple Choice

Запрос указывает более чем на один ресурс. В теле ответа могут содержаться указания на то, как правильно идентифицировать запрашиваемый ресурс

Moved Permanently

Затребованный ресурс больше не располагается на сервере

Moved Temporarily

Затребованный ресурс временно изменил свой адрес

В запросе клиента обнаружена синтаксическая ошибка

Имеющийся на сервере ресурс недоступен для данного пользователя

Ресурс, указанный клиентом, на сервере отсутствует

Method Not Allowed

Сервер не поддерживает метод, указанный в запросе

Internal Server Error

Один из компонентов сервера работает некорректно

Not Implemented

Функциональных возможностей сервера недостаточно, чтобы выполнить запрос клиента

Service Unavailable

Служба временно недоступна

HTTP Version not Supported

Версия HTTP, указанная в запросе, не поддерживается сервером

В ответе используется такая же структура полей заголовка, как и в запросе клиента. Поля заголовка предназначены для того, чтобы уточнить ответ сервера клиенту. Описание некоторых из полей, которые можно встретить в заголовке ответа сервера, приведено в табл. 1.3.

Таблица 1.3. Поля заголовка ответа веб-сервера.

Имя поля

Описание содержимого

Имя и номер версии сервера

Время в секундах, прошедшее с момента создания ресурса

Список методов, допустимых для данного ресурса

Content-Language

Языки, которые должен поддерживать клиент для того, чтобы корректно отобразить передаваемый ресурс

MIME -тип данных, содержащихся в теле ответа сервера

Число символов, содержащихся в теле ответа сервера

Дата и время последнего изменения ресурса

Дата и время, определяющие момент генерации ответа

Дата и время, определяющие момент, после которого информация, переданная клиенту, считается устаревшей

В этом поле указывается реальное расположение ресурса. Оно используется для перенаправления запроса

Директивы управления кэшированием. Например, no-cache означает, что данные не должны кэшироваться

В теле ответа содержится код ресурса, передаваемого клиенту в ответ на запрос. Это не обязательно должен быть HTML-текст веб-страницы. В составе ответа могут передаваться изображение, аудио-файл, фрагмент видеоинформации, а также любой другой тип данных, поддерживаемых клиентом. О том, как следует обрабатывать полученный ресурс, клиенту сообщает содержимое поля заголовка Content-type.

Ниже представлен пример ответа сервера на запрос, приведенный в предыдущем разделе. В теле ответа содержится исходный текст HTML-документа.

Server: Microsoft-IIS/5.1

X-Powered-By: ASP.NET

Content-Type: text/html

Accept-Ranges: bytes

ETag: "b66a667f948c92:8a5"

Content-Length: 426

Operand1:

Operand2:

Operation:

Поля заголовка и тело сообщения могут отсутствовать, но строка состояния является обязательным элементом, так как указывает на тип запроса/ответа.

Поле с именем Content-type может встречаться как в запросе клиента, так и в ответе сервера. В качестве значения этого поля указывается MIME -тип содержимого запроса или ответа. MIME -тип также передается в поле заголовка Accept, присутствующего в запросе.

Спецификация MIME (Multipurpose Internet Mail Extension - многоцелевое почтовое расширение Internet) первоначально была разработана для того, чтобы обеспечить передачу различных форматов данных в составе электронных писем. Однако применение MIME не исчерпывается электронной почтой. Средства MIME успешно используются в WWW и, по сути, стали неотъемлемой частью этой системы.

Стандарт MIME разработан как расширяемая спецификация, в которой подразумевается, что число типов данных будет расти по мере развития форм представления данных. Каждый новый тип в обязательном порядке должен быть зарегистрирован в IANA (Internet Assigned Numbers Authority).

До появления MIME компьютеры, взаимодействующие по протоколу HTTP, обменивались исключительно текстовой информацией. Для передачи изображений, как и для передачи любых других двоичных файлов, приходилось пользоваться протоколом FTP.

В соответствии со спецификацией MIME , для описания формата данных используются тип и подтип . Тип определяет, к какому классу относится формат содержимого HTTP-запроса или HTTP-ответа. Подтип уточняет формат. Тип и подтип отделяются друг от друга косой чертой:

тип/подтип

Поскольку в подавляющем большинстве случаев в ответ на запрос клиента сервер возвращает исходный текст HTML-документа, то в поле Content-type ответа обычно содержится значение text/html. Здесь идентификатор text описывает тип, сообщая, что клиенту передается символьная информация, а идентификатор html описывает подтип, т.е. указывает на то, что последовательность символов, содержащаяся в теле ответа, представляет собой описание документа на языке HTML.

Перечень типов и подтипов MIME достаточно велик. В табл. 1.4 приведены примеры MIME -типов, наиболее часто встречающиеся в заголовках HTML-запросов и ответов.

Таблица 1.4. MIME типы данных.

Тип/подтип

Расширение файла

Описание

Документ, предназначенный для обработки Acrobat Reader

application/msexcel

Документ в формате Microsoft Excel

application/postscript

Документ в формате PostScript

application/x-tex

Документ в формате ТеХ

application/msword

Документ в формате Microsoft Word

Документ в формате RTF, отображаемый с помощью Microsoft Word

Изображение в формате GIF

Изображение в формате JPEG

Изображение в формате TIFF

Изображение в формате XBitmap

ASCII-текст

Документ в формате HTML

Аудиофайл в формате MIDI

Аудиофайл в формате WAV

Почтовое сообщение

Сообщение в группы новостей

Mpeg, .mpg, .mpe

Видеофрагмент в формате MPEG

Видеофрагмент в формате AVI

Для однозначной идентификации ресурсов в сети Веб используются уникальные идентификаторы URL.

Единообразный идентификатор ресурса URI (Uniform Resource Identifier) представляет собой короткую последовательность символов, идентифицирующую абстрактный или физический ресурс. URI не указывает на то, как получить ресурс, а только идентифицирует его. Это даёт возможность описывать с помощью RDF (Resource Description Framework) ресурсы, которые не могут быть получены через Интернет (имена, названия и т.п.). Самые известные примеры URI - это URL и URN.

    URL (Uniform Resource Locator) - это URI, который, помимо идентификации ресурса, предоставляет ещё и информацию о местонахождении этого ресурса.

    URN (Uniform Resource Name) - это URI, который идентифицирует ресурс в определённом пространстве имён, но, в отличие от URL, URN не указывает на местонахождение этого ресурса.

URL имеет следующую структуру:

<схема>://<логин>:<пароль>@<хост>:<порт>/

    схема - схема обращения к ресурсу (обычно сетевой протокол);

    логин - имя пользователя, используемое для доступа к ресурсу;

    пароль - пароль, ассоциированный с указанным именем пользователя;

    хост - полностью прописанное доменное имя хоста в системе DNS или IP-адрес хоста;

    порт - порт хоста для подключения;

    URL-путь - уточняющая информация о месте нахождения ресурса.

Архитектура клиент-сервер применяется в большом числе сетевых технологий, используемых для доступа к различным сетевым сервисам. Кратко рассмотрим некоторые типы таких сервисов (и серверов).

Web-серверы

Изначально представляли доступ к гипертекстовым документам по протоколу HTTP (Huper Text Transfer Protocol). Сейчас поддерживают расширенные возможности, в частности работу с бинарными файлами (изображения, мультимедиа и т.п.).

Серверы приложений

Предназначены для централизованного решения прикладных задач в некоторой предметной области. Для этого пользователи имеют право запускать серверные программы на исполнение. Использование серверов приложений позволяет снизить требования к конфигурации клиентов и упрощает общее управление сетью.

Серверы баз данных

Серверы баз данных используются для обработки пользовательских запросов на языке SQL. При этом СУБД находится на сервере, к которому и подключаются клиентские приложения.

Файл-серверы

Файл-сервер хранит информацию в виде файлов и представляет пользователям доступ к ней. Как правило файл-сервер обеспечивает и определенный уровень защиты от несакционированного доступа.

Прокси-сервер

Во-первых, действует как посредник, помогая пользователям получить информацию из Интернета и при этом обеспечивая защиту сети.

Во-вторых, сохраняет часто запрашиваемую информацию в кэш-памяти на локальном диске, быстро доставляя ее пользователям без повторного обращения к Интернету.

Файрволы (брандмауэры)

Межсетевые экраны, анализирующие и фильтрующие проходящий сетевой трафик, с целью обеспечения безопасности сети.

Почтовые серверы

Представляют услуги по отправке и получению электронных почтовых сообщений.

Серверы удаленного доступа (RAS)

Эти системы обеспечивают связь с сетью по коммутируемым линиям. Удаленный сотрудник может использовать ресурсы корпоративной ЛВС, подключившись к ней с помощью обычного модема.

Это лишь несколько типов из всего многообразия клиент-серверных технологий, используемых как в локальных, так и в глобальных сетях.

Для доступа к тем или иным сетевам сервисам используются клиенты, возможности которых характеризуются понятием «толщины». Оно определяет конфигурацию оборудования и программное обеспечение, имеющиеся у клиента. Рассмотрим возможные граничные значения:

«Тонкий» клиент

Этот термин определяет клиента, вычислительных ресурсов которого достаточно лишь для запуска необходимого сетевого приложения через web-интерфейс. Пользовательский интерфейс такого приложения формируется средствами статического HTML (выполнение JavaScript не предусматривается), вся прикладная логика выполняется на сервере.
Для работы тонкого клиента достаточно лишь обеспечить возможность запуска web-браузера, в окне которого и осуществляются все действия. По этой причине web-браузер часто называют "универсальным клиентом".

«Толстый» клиент

Таковым является рабочая станция или персональный компьютер, работающие под управлением собственной дисковой операционной системы и имеющие необходимый набор программного обеспечения. К сетевым серверам «толстые» клиенты обращаются в основном за дополнительными услугами (например, доступ к web-серверу или корпоративной базе данных).
Так же под «толстым» клиентом подразумевается и клиентское сетевое приложение, запущенное под управлением локальной ОС. Такое приложение совмещает компонент представления данных (графический пользовательский интерфейс ОС) и прикладной компонент (вычислительные мощности клиентского компьютера).

В последнее время все чаще используется еще один термин: «rich»-client. «Rich«-клиент своего рода компромисс между «толстым» и «тонким» клиентом. Как и «тонкий» клиент, «rich»-клиент также представляет графический интерфейс, описываемый уже средствами XML и включающий некоторую функциональность толстых клиентов (например интерфейс drag-and-drop, вкладки, множественные окна, выпадающие меню и т.п.)

Прикладная логика «rich»-клиента также реализована на сервере. Данные отправляются в стандартном формате обмена, на основе того же XML (протоколы SOAP, XML-RPC) и интерпретируются клиентом.

Некоторые основные протоколы «rich»-клиентов на базе XML приведены ниже:

  • XAML (eXtensible Application Markup Language) - разработан Microsoft, используется в приложениях на платформе.NET;
  • XUL (XML User Interface Language) - стандарт, разработанный в рамках проекта Mozilla, используется, например, в почтовом клиенте Mozilla Thunderbird или браузере Mozilla Firefox;
  • Flex - мультимедийная технология на основе XML, разработанная Macromedia/Adobe.

Заключение

Итак, основная идея архитектуры «клиент-сервер» состоит в разделении сетевого приложения на несколько компонентов , каждый из которых реализует специфический набор сервисов. Компоненты такого приложения могут выполняться на разных компьютерах, выполняя серверные и/или клиентские функции. Это позволяет повысить надежность, безопасность и производительность сетевых приложений и сети в целом.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

[Введите текст]

Серверы. Основные понятия серверов

Модель клиент-сервер

Классификация стандартных серверов

Список использованной литературы

Серверы. Основные понятия серверов

Сервер (от англ. server, обслуживающий). В зависимости от предназначения существует несколько определений понятия сервер.

1. Сервер (сеть) - логический или физический узел сети, обслуживающий запросы к одному адресу и/или доменному имени (смежным доменным именам), состоящий из одного или системы аппаратных серверов, на котором выполняются один или система серверных программ

2. Сервер (программное обеспечение) - программное обеспечение, принимающее запросы от клиентов (в архитектуре клиент-сервер).

3. Сервер (аппаратное обеспечение) - компьютер (или специальное компьютерное оборудование) выделенный и/или специализированный для выполнения определенных сервисных функций.

3. Сервер в информационных технологиях - программный компонент вычислительной системы, выполняющий сервисные функции по запросу клиента, предоставляя ему доступ к определённым ресурсам.

Взаимосвязь понятий. Серверное приложение (сервер) запускается на компьютере, так же называемом "сервер", при этом при рассмотрении топологии сети, такой узел называют "сервером". В общем случае может быть так, что серверное приложение запущено на обычной рабочей станции, или серверное приложение, запущенное на серверном компьютере в рамках рассматриваемой топологии выступает в роли клиента (т.е. не является сервером с точки зрения сетевой топологии).

Модель клиент-сервер

Понятия сервер и клиент и закрепленные за ними роли образуют программную концепцию «клиент-сервер». Модель клиент-сервер - это еще один подход к структурированию Операционной системы (ОС). В широком смысле модель клиент-сервер предполагает наличие программного компонента - потребителя какого-либо сервиса - клиента, и программного компонента - поставщика этого сервиса - сервера. Взаимодействие между клиентом и сервером стандартизуется, так что сервер может обслуживать клиентов, реализованных различными способами и, может быть, разными производителями. При этом главным требованием является то, чтобы они запрашивали услуги сервера понятным ему способом. Инициатором обмена обычно является клиент, который посылает запрос на обслуживание серверу, находящемуся в состоянии ожидания запроса. Один и тот же программный компонент может быть клиентом по отношению к одному виду услуг, и сервером для другого вида услуг. Модель клиент-сервер является скорее удобным концептуальным средством ясного представления функций того или иного программного элемента в той или иной ситуации, нежели технологией. Эта модель успешно применяется не только при построении ОС, но и на всех уровнях программного обеспечения, и имеет в некоторых случаях более узкий, специфический смысл, сохраняя, естественно, при этом все свои общие черты. Применительно к структурированию ОС идея состоит в разбиении ее на несколько процессов - серверов, каждый из которых выполняет отдельный набор сервисных функций - например, управление памятью, создание или планирование процессов. Каждый сервер выполняется в пользовательском режиме. Клиент, которым может быть либо другой компонент ОС, либо прикладная программа, запрашивает сервис, посылая сообщение на сервер. Ядро ОС (называемое здесь микроядром), работая в привилегированном режиме, доставляет сообщение нужному серверу, сервер выполняет операцию, после чего ядро возвращает результаты клиенту с помощью другого сообщения. Для взаимодействия с клиентом (или клиентами, если поддерживается одновременная работа с несколькими клиентами) сервер выделяет необходимые ресурсы межпроцессного взаимодействия (разделяемая память, пайп, сокет, и т. п.) и ожидает запросы на открытие соединения (или, собственно, запросы на предоставляемый сервис). В зависимости от типа такого ресурса, сервер может обслуживать процессы в пределах одной компьютерной системы или процессы на других машинах через каналы передачи данных (например, COM-порт) или сетевые соединения.

Формат запросов клиента и ответов сервера определяется протоколом. Спецификации открытых протоколов описываются открытыми стандартами, например, протоколы Интернета определяются в документах RFC.

В зависимости от выполняемых задач одни серверы, при отсутствии запросов на обслуживание, могут простаивать в ожидании. Другие могут выполнять какую-то работу (например, работу по сбору информации), у таких серверов работа с клиентами может быть второстепенной задачей.

Классификация стандартных серверов

Как правило, каждый сервер обслуживает один (или несколько схожих) протоколов и серверы можно классифицировать по типу услуг, которые они предоставляют.

Универсальные серверы - особый вид серверной программы, не предоставляющий никаких услуг самостоятельно. Вместо этого универсальные серверы предоставляют серверам услуг упрощенный интерфейс к ресурсам межпроцессного взаимодействия и/или унифицированный доступ клиентов к различным услугам. Существуют несколько видов таких серверов:

inetd от англ. internet super-server daemon демон сервисов IP - стандартное средство UNIX-систем - программа, позволяющая писать серверы TCP/IP (и сетевых протоколов других семейств), работающие с клиентом через перенаправленные inetd потоки стандартного ввода и вывода (stdin и stdout).

RPC от англ. Remote Procedure Call удаленный вызов процедур - система интеграции серверов в виде процедур доступных для вызова удаленным пользователем через унифицированный интерфейс. Интерфейс изобретенный Sun Microsystems для своей операционной системы (SunOS, Solaris; Unix-система), в настоящее время используетстся как в большинстве Unix-систем, так и в Windows.

Прикладные клиент-серверные технологии Windows:

(D-)COM (англ. (Distributed) Component Object Model - модель составных объектов) и др. - Позволяет одним программам выполнять операции над объектами данных используя процедуры других программ. Изначально данная технология предназначена для их «внедрения и связывания объектов» (OLE англ. Object Linking and Embedding), но, в общем, позволяет писать широкий спектр различных прикладных серверов. COM работает только в пределах одного компьютера, DCOM доступна удаленно через RPC.

Active-X - Расширение COM и DCOM для создания мультимедиа-приложений.

Универсальные серверы часто используются для написания всевозможных информационных серверов, серверов, которым не нужна какая-то специфическая работа с сетью, серверов, не имеющих никаких задач, кроме обслуживания клиентов. Например, в роли серверов для inetd могут выступать обычные консольные программы и скрипты.

Большинство внутренних и сетевых специфических серверов Windows работают через универсальные серверы (RPC, (D-)COM).

Сетевые службы обеспечивают функционирование сети, например серверы DHCP и BOOTP обеспечивают стартовую инициализацию серверов и рабочих станций, DNS - трансляцию имен в адреса и наоборот.

Серверы туннелирования (например, различные VPN-серверы) и прокси-серверы обеспечивают связь с сетью, недоступной роутингом.

Серверы AAA и Radius обеспечивают в сети единую аутентификацию, авторизацию и ведение логов доступа.

Информационные службы. К информационным службам можно отнести как простейшие серверы сообщающие информацию о хосте (time, daytime, motd), пользователях (finger, ident), так и серверы для мониторинга, например SNMP. Большинство информационных служб работают через универсальные серверы.

Особым видом информационных служб являются серверы синхронизации времени - NTP кроме информировании клиента о точном времени NTP-сервер периодически опрашивает несколько других серверов на предмет коррекции собственного времени. Кроме коррекции времени анализируется и корректируется скорость хода системных часов. Коррекция времени осуществляется ускорением или замедлением хода системных часов (в зависимости от направления коррекции), чтобы избежать проблем возможных при простой перестановке времени.

Файл-серверы представляют собой серверы для обеспечения доступа к файлам на диске сервера.

Прежде всего, это серверы передачи файлов по заказу, по протоколам FTP, TFTP, SFTP и HTTP. Протокол HTTP ориентирован на передачу текстовых файлов, но серверы могут отдавать в качестве запрошенных файлов и произвольные данные, например, динамически созданные веб-страницы, картинки, музыку и т. п.

Другие серверы позволяют монтировать дисковые разделы сервера в дисковое пространство клиента и полноценно работать с файлами на них. Это позволяют серверы протоколов NFS и SMB. Серверы NFS и SMB работают через интерфейс RPC.

Недостатки файл-серверной системы:

Очень большая нагрузка на сеть, повышенные требования к пропускной способности. На практике это делает практически невозможной одновременную работу большого числа пользователей с большими объемами данных.

Обработка данных осуществляется на компьютере пользователей. Это влечет повышенные требования к аппаратному обеспечению каждого пользователя. Чем больше пользователей, тем больше денег придется потратить на оснащение их компьютеров.

Блокировка данных при редактировании одним пользователем делает невозможной работу с этими данными других пользователей.

Безопасность. Для обеспечения возможности работы с такой системой Вам будет необходимо дать каждому пользователю полный доступ к целому файлу, в котором его может интересовать только одно поле

Серверы доступа к данным обслуживают базу данных и отдают данные по запросам. Один из самых простых серверов подобного типа - LDAP (англ. Lightweight Directory Access Protocol - облегчённый протокол доступа к спискам).

Для доступа к серверам баз данных единого протокола не существует, однако все серверы баз данных объединяет использование единых правил формирования запросов - язык SQL (англ. Structured Query Language - язык структурированных запросов).

Службы обмена сообщениями позволяют пользователю передавать и получать сообщения (обычно - текстовые).

В первую очередь это серверы электронной почты, работающие по протоколу SMTP. SMTP-сервер принимает сообщение и доставляет его в локальный почтовый ящик пользователя или на другой SMTP-сервер (сервер назначения или промежуточный). На многопользовательских компьютерах, пользователи работают с почтой прямо на терминале (или веб-интерфейсе). Для работы с почтой на персональном компьютере, почта забирается из почтового ящика через серверы, работающие по протоколам POP3 или IMAP.

Для организации конференций существует серверы новостей, работающие по протоколу NNTP.

Для обмена сообщениями в реальном времени существуют серверы чатов, стандартный чат-сервер работает по протоколу IRC - распределенный чат для интернета.

Существует большое количество других чат-протоколов, например ICQ или Jabber.

Серверы удаленного доступа

Серверы удаленного доступа, через соответствующую клиентскую программу, обеспечивают пользователя консольным доступом к удаленной системе.

Для обеспечения доступа к командной строке служат серверы telnet, RSH, SSH.

Графический интерфейс для Unix-систем - X Window System, имеет встроенный сервер удаленного доступа, так как с такой возможностью разрабатывался изначально. Иногда возможность удаленного доступа к интерфейсу Х-Window неправильно называют «X-Server» (этим термином в X-Window называется видеодрайвер).

Стандартный сервер удаленного доступа к графическому интерфейсу Microsoft Windows называется терминальный сервер.

Некоторую разновидность управления (точнее мониторинга и конфигурирования), также, предоставляет протокол SNMP. Компьютер или аппаратное устройство для этого должно иметь SNMP-сервер.

Игровые серверы, служат для одновременной игры нескольких пользователей в единой игровой ситуации. Некоторые игры имеют сервер в основной поставке и позволяют запускать его в невыделенном режиме (то есть позволяют играть на машине, на которой запущен сервер).

Серверные решения - операционные системы и/или пакеты программ, оптимизированные под выполнение компьютером функций сервера и/или содержащие в своем составе комплект программ для реализации типичного сервисов.

Примером серверных решений можно привести Unix-системы, изначально предназначенные для реализации серверной инфраструктуры, или серверные модификации платформы Microsoft Windows.

Также необходимо выделить пакеты серверов и сопутствующих программ (например, комплект веб-сервер/PHP/MySQL для быстрой развертки хостинга) для установки под Windows (для Unix свойственна модульная или «пакетная» установка каждого компонента, поэтому такие решения редки).

В интегрированных серверных решениях установка всех компонентов выполняется единовременно, все компоненты в той или иной мере тесно интегрированы и предварительно настроены друг на друга. Однако в этом случае, замена одного из серверов или вторичных приложений (если их возможности не удовлетворяют потребностям) может представлять проблему.

Серверные решения служат для упрощения организации базовой ИТ-инфраструктуры компаний, то есть для оперативного построения полноценной сети в компании, в том числе и «с нуля». Компоновка отдельных серверных приложений в решение подразумевает, что решение предназначено для выполнения большинства типовых задач; при этом значительно снижается сложность развертывания и общая стоимость владения ИТ-инфраструктурой, построенной на таких решениях.

Прокси-сервер (от англ. proxy - «представитель, уполномоченный») служба в компьютерных сетях, позволяющая клиентам выполнять косвенные запросы к другим сетевым службам. Сначала клиент подключается к прокси-серверу и запрашивает какой-либо ресурс (например, e-mail), расположенный на другом сервере. Затем прокси-сервер либо подключается к указанному серверу и получает ресурс у него, либо возвращает ресурс из собственного кеша (в случаях, если прокси имеет свой кеш). В некоторых случаях запрос клиента или ответ сервера может быть изменён прокси-сервером в определённых целях. Также прокси-сервер позволяет защищать клиентский компьютер от некоторых сетевых атак.

Вывод ы

сервер формат п рокси windows

Таким образом, любая компьютерная сеть, по сути, является сетью клиент-сервер. Пользователь, подключивший свой компьютер к Интернет, будет иметь дело с сетью клиент-сервер, и даже если компьютер не имеет выхода в сеть, его программное обеспечение, да и сам он, скорее всего, организованы по схеме клиент-сервер.

Список использ ованной литературы

1. Дрога А.А., Жукова П.Н., Копонев Д.Н., Лукьянов Д.Б., Прокопенко А.Н. Информатика и математика. - Минск, 2008.

2. Коннолли Т., Бегг К. Базы данных. Проектирование, реализация и сопровождение. Теория и практика - 3-е изд. - М.: «Вильямс», 2003.

3. Кузнецов С.Д. Основы баз данных. - 1-е изд. - М.: «Интернет- университет информационных технологий - ИНТУИТ.ру», 2005.

4. Скотт В. Эмблер, Прамодкумар Дж. Садаладж. Рефакторинг баз данных: эволюционное проектирование - М.: «Вильямс», 2007.

5. А.Н. Морозевич, А.М. Зеневич Информатика. Минск, 2008.

6.Титоренко Г.А. Информационные технологии управления. М., Юнити: 2002.

7. Мельников В. Защита информации в компьютерных системах. - М.: Финансы и статистика, Электронинформ, 1997.

Размещено на Allbest.ru

...

Подобные документы

    Основные понятия серверов. Модель клиент-сервер. Классификация стандартных серверов. Недостатки файл-серверной системы. Криптографические методы защиты информации. Серверы удаленного доступа. Методы и средства обеспечения безопасности информации.

    контрольная работа , добавлен 13.12.2010

    Общие сведения об операционной системе Linux. Анализ информации о серверах. Основные прикладные клиент-серверные технологии Windows. Сведения о SQL-сервере. Общая информация о MySQL–сервере. Установка и специфика конфигурирования MYSQL-сервера на LINUX.

    курсовая работа , добавлен 16.12.2015

    Анализ архитектуры информационной системы, в структуру которой входят системы файл-сервер и клиент-сервер. Сравнение языков запросов SQL и QBE. Принципы разработки приложений архитектуры клиент-сервер при помощи структурированного языка запросов SQL.

    курсовая работа , добавлен 11.04.2010

    Архитектура "клиент-сервер". Системный анализ базы данных "Газета объявлений", ее инфологическое и физическое проектирование. Программирование на стороне SQL-сервера. Разработка клиентской части в Borland C++ Builder 6.0 и с помощью Web-технологий.

    курсовая работа , добавлен 07.07.2013

    Методика и основные этапы разработки системы тестирования для оценки уровня знаний студентов с применением технологии "Клиент-сервер". Проектирование клиентской, серверной части данной системы тестирования, порядок составления финальных отчетов.

    дипломная работа , добавлен 08.11.2010

    Проектирование физической и логической моделей удаленной базы данных для АЗС. Разработка базы данных в СУБД Firebird с помощью утилиты IBExpert. Создание клиентского приложения для Windows с использованием клиент-серверной технологии в среде C++ Builder.

    курсовая работа , добавлен 18.01.2017

    Создание программного продукта на основании клиент-серверной технологии, реализующего отказоустойчивую работу системы, которая способна в случае потери связи с ведущим сервером подключить клиента к альтернативному серверу (на примере сервера погоды).

    курсовая работа , добавлен 24.08.2012

    Проектирование и разработка базы данных в РСУБД Firebird. Последовательность создания приложения, основанного на клиент-серверной технологии и работающего в операционной системе Windows. Хранимые процедуры и триггеры. Доступ к сети и транзакции.

    курсовая работа , добавлен 27.07.2013

    Реляционные базы данных как часть корпоративных информационных систем, их построение по принципам клиент-серверной технологии. Основные характеристики СУБД Firebird. Проектирование базы данных для информационной системы "Компьютерные комплектующие".

    курсовая работа , добавлен 28.07.2013

    Архитектура "клиент-сервер". Параллельная обработка данных в многопроцессорных системах. Модернизация устаревших информационных систем. Характерные черты современных серверных СУБД. Наиболее популярные серверные СУБД. Распределенные запросы и транзакции.

Использование технологии «клиент-сервер»

Со временем не очень функциональную модель файлового сервера для локальных сетей (FS) сменили появившиеся одна задругой модели строения «Клиент сервер» (RDA, DBS и AS).

Технология «Клиент - сервер», которая заняла самый низ базы данных, стала главной технологией глобальной сети Internet. Далее, вследствие перенесения идей сети Internet в сферу корпоративных систем, возникла технология Intranet. В различие от технологии «Клиент-сервер» такая технология обращена на информацию в ее окончательно готовом виде к потреблению, а не на данные. Вычислительные системы, которые построенны на основе Intranet, обладают в своем составе центральные серверы информации и определенные компоненты представления информации последнему пользователю (браузеры или программы-навигаторы). Дейсвие между сервером и клиентом в Intranet совершается с помощью web - технологий.

В современное время технология «Клиент-сервер» приобрела очень значительное распространение, но сама по себе данная технология универсальных рецептов не имеет. Она только доставляет всеобщее суждение о том, как должна быть создана нынешняя распределительная информационная система. Так же осуществления этой технологии в определенных программных товарах и даже в видах программного обеспечения распознаются весьма существенно.

Классическая двухуровневая архитектура «Клиент - сервер»

Как правило компоненты сети не имеют равных прав: у одних есть доступ к ресурсам (например: система управления базами данных, процессор, принтер, файловая система и прочие), у других есть возможность обращаться к этим ресурсам. операционный система сервер технология

Технология «Клиент - сервер» - это архитектура программного комплекса распределяющая прикладной программой по двум логически различным частям (сервер и клиент), которые взаимодействуют по схеме «запрос-ответ» и решают собственные определенные задачи.

Программа (или компьютер), управляющая и/или владеющая каким-нибудь ресурсом, называется сервером этого ресурса.

Программа (компьютер или), запрашивающая и пользующаяся каким-либо ресурсом, называется клиентом этого ресурса.

При этом так же может появиться такое условия, когда кое-какой программный блок будет одновременно реализовывать функции сервера по отношению к одному блоку и клиента по отношению к другому блоку.

Главный принцип технологии «Клиент-сервер» заключается в разделении функций приложения как минимум на три звена:

Модули интерфейса с пользователем;

Еще эта группа называется логикой представления. С ее помощью пользователи могут взаимодействовать с приложениями. Независимо от конкретных характеристик логики представления (интерфейс командной строки,интерфейсы через посредника, сложные графические пользовательские интерфейсы) ее задача заключается в том, чтобы обеспечить средства для большей эффективности обмена информацией между информационной системой и пользователем.

Модули хранения данных;

Эта группа еще называется бизнес-логикой. Бизнес-логика находит, для чего именно нужно то или иное приложение (например, прикладные функции, присущие для предоставленной предметной области). Разделение приложения по границам между программами обеспечивает натуральную основу для распределения приложения на двух или более компьютерах.

Модули обработки данных (функции управления ресурсами);

Так же эта группа называется логикой алгоритмами доступа к данным или просто доступа к данным. Алгоритмы входа к данным рассматриваются как специфический интерфейс для конкретного приложения к устройству стабильного сохранения данных наподобие СУБД или же файловой системы. С помощью модулей обработки данных организуется специфический интерфейс для приложения СУБД. С помощью интерфейса приложение может управлять соединениями с базой данных и запросами к ней (перевод специфических для конкретного приложения запросов на язык SQL, получение результатов и перевод этих результатов обратно в специфические для конкретного приложения структуры данных). Каждое из перечисленных звеньев может реализоваться независимо от нескольких других. Например, не изменяя программ, которые используются для обработки и хранения данных, можно изменить интерфейс с пользователем так, что одни и те же данные будут отображаться в виде таблиц, гистограмм или же графиков. Самые простые приложения часто способны собрать все три звена в единственную программу, и подобное разделение соответствует функциональным границам.

В соответствии с разделением функций в каждом приложении выделяют следующие компоненты:

  • - компонент представления данных;
  • - прикладной компонент;
  • - компонент управления ресурсом.

Клиент-сервер в классической архитектуре нужно распределить три главные части приложения по 2-м физическим модулям. Обычно прикладной компонент находится на сервере (например, на сервере БД), компонент представления данных - на стороне клиента, а компонент управления ресурсом распределяется между серверной и клиентской частями. В этом заключается главный недостаток классической двухуровневой архитектуры.

В двухзвенной архитектуре при разделении алгоритмов обработки данных, разработчики должны иметь полную информацию о последних изменениях, которые были внесены в систему, и понимать эти изменения, что создает не маленькие сложности при разработке клиент-серверных систем, их сопровождении и установке, поскольку необходимо тратить большие усилия на координацию действий разных групп специалистов. В действиях разработчиков часто возникают противоречия, а это тормозит развитие системы и вынуждает изменять уже готовые и проверенные элементы.

Чтобы избежать несогласованности разных элементов архитектуры, создали две модификации двухзвенной архитектуры «Клиент - сервер»: «Толстый клиент» («Тонкий сервер») и «Тонкий клиент» («Толстый сервер»).

В этой архитектуре разработчики попытались выполнять обработку данных на одной из двух физических частей - либо на стороне клиента («Толстый клиент»), либо на сервере («Тонкий клиент).

У каждого подхода есть свои значительные недостатки. В первой ситуации неоправданно перегружается сеть, потому что по ней передаются необработанные то есть избыточные данные. Кроме того, усложняется поддержка системы и ее изменение, потому что исправление ошибки или же замена алгоритма вычислений требуют одновременной полной замены всех интерфейсных программ, если не сделать полной замены, то может возникнуть несогласованность данных или ошибки. Если же вся обработка информации выполняется на сервере, то возникает проблема описания встроенных процедур и их отладки. Систему с обработкой информации на сервере абсолютно невозможно перенести на другую платформу (ОС), это является серьезным недостатком.

Если же создается двухуровневая классическая архитектура «Клиент - сервер», то нужно знать следующие факты:

Архитектура «Толстый сервер» аналогична архитектуре «Тонкий клиент»

Передача запроса от клиента на сервер, обработка запроса сервером и передача результата клиенту. При этом архитектуры имеют следующие недостатки:

  • - усложняется реализация, так как языки типа SQL не приспособлены для разработки подобного ПО и нет хороших средств отладки;
  • - производительность программ, которые написаны на языках типа SQL, очень низка, чем созданые на прочих языках, что имеет наиболее важное значение для сложных систем;
  • - программы, которые написаны на СУБД-языках как правило функционируют от части не очень надежно; ошибка в них может привести к выходу из строя всего сервера баз данных;
  • - получившиеся таким образом программы полностью непереносимы на другие платформы и системы.
  • - архитектура «Толстый клиент» аналогична архитектуре «Тонкий сервер»

Обработка запроса совершается на стороне клиента, то есть совершается передача клиенту всех необработанных данных с сервера. В этом случае у архитектур имеются негативные стороны:

  • - усложняется обновление ПО, потому что его замену нужно производить одновременно по всей системе;
  • - усложняется распределение полномочий, потому что разграничение доступа происходит не по действиям, а по таблицам;
  • - перегружается сеть вследствие передачи по ней необработанных данных;
  • - слабая защита данных, так как сложно правильно распределить полномочия.

Для решения перечисленных проблем нужно использовать многоуровневые (три и более уровней) архитектуры «Клиент-сервер».

Трехуровневая модель .

С середины 90-х годов прошлого века популярность специалистов получила трехзвенная архитектура «Клиент - сервер», разделившая информационную систему по функциональным возможностям на три некоторых звена: логика доступа к данным, логика представления и бизнес-логика. В противоположность двухуровневой архитектуры в трехуровневой имеется дополнительное звено - сервер приложений, предназначенный для осуществления бизнес-логики, при этом полностью разгружается клиент, который посылает запросы промежуточному программному обеспечению, и максимально употребляются все возможности серверов.

В трехуровневой архитектуре клиент как правило не перегружен функциями обработки данных, а осуществляет свою главную роль системы представления информации, поступающей с сервера приложений. Такой интерфейс можно привести в исполнение с помощью стандартных средств Web-технологии - браузера, CGI и Java. Это понижает объемность данных, предоставляемых между клиентом и сервером приложений, что позволяет подключать клиентские компьютеры даже по медленным линиям типа телефонных каналов. В связи с этим, клиентская часть может быть такой простой, что в большинстве случаев ее осуществляют с помощью универсального браузера. Однако если все-таки ее поменять придется, то эту процедуру можно реализовать быстро и безболезненно.

Сервер приложений - это программное обеспечение, которое является промежуточным пластом между сервером и клиентом.

  • - Message orientated - яркие представители MQseries и JMS;
  • - Object Broker - яркие представители CORBA и DCOM;
  • - Component based - яркие представители.NET и EJB.

Применение сервера приложений приносит намного больше возможностей, например, снижается нагрузка на клиентские компьютеры, так как сервер приложений распределяет нагрузку и обеспечивает защиту от сбоев. Поскольку бизнес-логика хранится на сервере приложений, то при каких-либо изменениях в отчетности или расчетах клиентские программы никаким образом не задеваются.

Есть немного серверов приложений от таких знаменитых компаний как Sun, Oracle Microsystem, IBM, Borland и каждый из них различается комплектом предоставляемых сервисов (производительность учитывать в данном случае не буду). Эти сервисы облегчают программирование и развертывание приложений масштаба предприятия. Как правило сервер приложений дает следующие сервисы:

  • - WEB Server - чаще всего включают в поставку самый мощный и популярный Apache;
  • - WEB Container - позволяет выполнять JSP и сервлеты. Для Apache таким сервисом является Tomcat;
  • - CORBA Agent - может предоставлять распределенную директорию для хранения CORBA объектов;
  • - Messaging Service - брокер сообщений;
  • - Transaction Service - уже из названия понятно, что это сервис транзакций;
  • - JDBC - драйвера для подключения к базам данных, ведь именно серверу приложений придется общаться с базами данных и ему нужно уметь подключаться к используемой в вашей компании базе;
  • - Java Mail - данный сервис может предоставлять сервис к SMTP;
  • - JMS (Java Messaging Service) - обработка синхронных и асинхронных сообщений;
  • - RMI (Remote Method Invocation) - вызов удаленных процедур.

Многоуровневые клиент-серверные системы довольно легко можно перевести на Web-технологию - для этого нужно заменить клиентскую часть специализированным или универсальным браузером, а сервер приложений дополнить Web-сервером и малыми программами вызова процедур сервера. Для

разработки этих программ можно употребить как Common Gateway Interface (CGI), так и более современную технологию Java.

В трехуровневой системе в качестве каналов связи между сервером приложений и СУБД можно использовать наиболее быстрые линии, требующие минимальныхзатрат, так как сервера как правило находятся в одном помещении (серверной) и не будет перегружать сеть из-за передачи высокого количества информации.

Из всего перечисленного вытекает вывод о том, что двухуровневая архитектура весьма уступает многоуровневой архитектуре, в связи с этим на сегодняшний день применяется только многоуровневая архитектура «Клиент - сервер», распознающая три модификации - RDA, DBS и AS.

Различные модели технологии «Клиент - сервер»

Самой первой основной базовой технологией для локальных сетей была модель файлового сервера (FS) . В то время эта технология была весьма распространена среди отечественных разработчиков, использовавших такие системы, как FoxPro, Clipper, Clarion, Paradox и так далее.

В модели FS функции всех 3-х компонентов (компонент представления, прикладной компонент и компонент доступа к ресурсам) совмещены в одном коде, который осуществляется на компьютере-сервере (хосте). Компьютер-клиент в такой архитектуре совсем отсутствует, а отображение и вынесение данных совершается с помощью компьютера компьютера или терминала в порядке эмуляции терминала. Приложения обычно формируются на языке четвертого поколения (4GL). Один из компьютеров в сети считается файловым сервером и дает другим компьютерам услуги по обработке файлов. Он функционирует под управлением сетевых ОС и играет важную роль компонента доступа к информационным ресурсам. На прочих ПК в сети функционирует приложение, в кодах которого соединены прикладной компонент и компонент представления.

Технология действия между клиентом и сервером такая: запрос посылается на файловый сервер, передающий СУБД, которая размещена на компьютере-клиенте, требуемый блок данных. Вся обработка исполняется на терминале.

Протокол обмена - это некий набор вызовов, которые обеспечивают приложению вход к файловой системе на файл-сервере.

Положительными сторонами данной технологии являются:

  • - простота разработки приложений;
  • - удобство администрирования и обновления ПО
  • - низкая стоимость оборудования рабочих мест (терминалы или дешевые компьютеры с низкими характеристиками в режиме эмуляции терминала всегда дешевле полноценных ПК).

Но достоинства FS - модели превосходят ее недостатки:

Несмотря на немаленький объем данных, которые пересылаются по сети, время отклика является критичным, потому что каждый символ, введенный клиентом на терминале, должен быть передан на сервер, обработан приложением и возвращен обратно для вывода на экран терминала. Помимо этого существует проблема распределения нагрузки между несколькими компьютерами.

  • - дорогостоящее аппаратное обеспечение сервера , так как все пользователи разделяют его ресурсы;
  • - отсутствие графического интерфейса .

Благодаря решению проблем, присущих технологии «Файл - сервер» появилась более прогрессивная технология, получившая название «Клиент - сервер».

Для современных СУБД архитектура «клиент-сервер» стала фактически стандартом. Если предполагается, что проектируемая сетевая технология будет иметь архитектуру «клиент-сервер», то это означает, что прикладные программы, реализованные в ее рамках, будут иметь распределенный характер, то есть часть функций приложений будет реализована в программе-клиенте, другая - в программе-сервере.

Различия в реализации приложений в рамках технологии «Клиент-сервер»определяются четырьмя факторами:

  • - какие виды программного обеспечения в логических компонентах;
  • - какие механизмы программного обеспечения используются для реализации функций логических компонентов;
  • - как логические компоненты распределяются компьютерами в сети;
  • - какие механизмы используются для связи компонент между собой.

Исходя из этого, выделяются три подхода, каждый из которых реализован в соответствующей модели технологии «Клиент - сервер»:

  • - модель доступа к удаленным данным (Remote Date Access - RDA);
  • - модель сервера базы данных (DateBase Server - DBS);
  • - модель сервера приложений (Application Server - AS).

Существенным преимуществом RDA-модели является обширный выбор инструментальных средств разработки приложений, которые обеспечивают стремительное образование desktop-приложений, которые работают с SQL-направленными СУБД. Как правило, инструментальные средства поддерживают графический интерфейс пользователя с ОС, а также средства автоматической генерации кода, где смешаны функции представления и прикладные функции.

Несмотря на большое распространение, RDA-модель уступает место наиболее технологичной DBS-модели.

Модель сервера баз данных (DBS) - сетевая архитектура технологии «Клиент - сервер», в основе которой лежит механизм хранимых процедур, который реализует прикладные функции. В DBS - модели понятие информационного ресурса сжато до базы данных из-за того же механизма хранимых процедур, реализованный в СУБД, да и то не во всех.

Положительные стороны DBS-модели перед RDA-моделью очевидны: это и возможность централизованного администрирования различных функций, и снижение трафика сети потому, что вместо SQL-запросов по сети передаются вызовы хранимых процедур, и возможность разделения процедуры между двумя приложениями, и экономия ресурсов компьютера за счет использования однажды созданного плана выполнения процедуры.

Модель сервера приложений (AS) - это сетевая архитектура технологии «Клиент - сервер», которая представляет собой процесс, который выполняется на компьютере-клиенте, и, который отвечает за интерфейс с пользователем (ввод и отображение данных). Важнейшим элементом такой модели является прикладной компонент, который называется сервером приложения, он функционирует на удаленном компьютере (или двух компьютерах). Сервер приложений осуществлен как группа прикладных функций, оформленных в виде сервисов (служб). Каждый сервис предоставляет некоторые услуги всем программам, которые желают и могут ими воспользоваться.

Выучив все модели технологии «Клиент - сервер», можно сделать такой вывод: RDA- и DBS-модели, в основе этих двух моделей лежит двухзвенная схема разделения функций. В RDA-модели прикладные функции переданы клиенту, в DBS-модели их исполнение реализовывается через ядро СУБД. В RDA-модели прикладной компонент сливается с компонентом представления, в DBS-модели интегрируется в компонент доступа к ресурсам.

В AS-модели осуществлена трехзвенная схема разделения функций, где прикладной компонент выделен как главный изолированный элемент приложения, который имеет стандартизированные интерфейсы с двумя прочими компонентами.

Результаты анализа моделей технологий «Файловый сервер» и «Клиент - сервер» представлены в таблице 1.

Несмотря на свое названия технология «Клиент -сервер» также является системой распределенных вычислений. В этом случае распределенные вычисления понимают как архитектура «Клиент - сервер» при участии некоторых серверов. Применительно к распределенной обработке термин «сервер» означает просто программу, отвечающую на запросы и выполняющую необходимые действия по запросу клиента. Поскольку распределенные вычисления - это один из видов систем «Клиент - сервер», то пользователи приобретают такие же преимущества, например, возрастание общей пропускной способности и возможность многозадачной работы. Также, интеграция дискретных сетевых компонентов и обеспечение их работы как единого целого способствует расширению результативности и уменьшению сбережений.

Так как обработка реализовывается в любом месте сети, распределенные вычисления в архитектуре «Клиент-сервер» гарантируют действенное масштабирование. Чтобы добиться баланса между сервером и клиентом, компонент приложения должен осуществляться на сервере только в том случае, если централизованная обработка более результативна. Если логика программы, взаимодействующей с централизованными данными, сосредоточена на той же машине, что и данные, их необязательно передавать по сети, поэтому требования к сетевой среде могут быть снижены.

Вследствие этого можно сделать следующий вывод: если будет нужно работать с малыми информационными системами, которые не требуют графического интерфейса с пользователем, можно использовать FS - модель. Вопрос о графическом интерфейсе можно свободно решить с помощью RDA-модель. DBS-модель это очень хороший вариант для систем управления базами данных(СУБД). AS-модель это лучший вариант для того, чтобы создать большие информационные системы, а также при использовании низкоскоростных каналов связи.

Клиент-серверные технологии

Почти все модели организации взаимодействия пользователя с БД построены на основе клиент-серверной технологии. Предполагается, что каждое такое приложение отличается способом распределения функций: клиентская часть отвечает за целевую обработку данных и организацию взаимодействия с пользователем, серверная часть обеспечивает хранение данных - обрабатывает запросы и посылает результаты клиенту для специальной обработки. Типовая архитектура клиент-серверной технологии представлена на рис. 4.1:

Рис. 4.1. Типовая архитектура клиент-серверной технологии

Часть функций центральных ЭВМ взяли на себя локальные компьютеры. Любое программное приложение в этом случае представляется из трех компонентов: компонент представления, реализующий интерфейс с пользователем; прикладной компонент, обеспечивающий выполнение прикладных функций; компонент доступа к информационным ресурсам (менеджер ресурсов), выполняющий накопление информации и управление данными.

На основе распределения этих компонентов между рабочей станцией и сервером сети выделяют модели архитектуры «клиент-сервер»:

· модель доступа к удаленным данным (рис. 4.2). На сервере расположены только данные:

Рис. 4.2. Модель доступа к удаленным данным

Данная модель характеризуется невысокой производительностью, так как вся информация обрабатывается на рабочих станциях; кроме того, поддерживается низкая скорость обмена при передаче больших объемов информации с сервера на рабочие станции;

· модель сервера управления данными (рис. 4.3):

Рис. 4.3. Модель сервера управления данными

Особенности данной модели: уменьшение объемов информации, передаваемых по сети, так как выборка необходимых информационных элементов осуществляется на сервере, а не на рабочих станциях; унификация и широкий выбор средств создания приложений; отсутствие четкого разграничения между компонентом представления и прикладным компонентом, что затрудняет совершенствование вычислительной системы. Целесообразно использовать в случае обработки умеренных объемов информации, при этом сложность прикладного компонента должна быть невысокой,

· модель комплексного сервера (рис. 4.4):

Рис. 4.4. Модель комплексного сервера

Преимущества модели: высокая производительность, централизованное администрирование, экономия ресурсов сети. Такой сервер оптимален для крупных сетей, ориентированных на обработку больших и увеличивающихся со временем объемов информации;

· трехзвенная архитектура «клиент-сервер» (рис. 4.5). Используется при усложнении и увеличении ресурсоемкости прикладного компонента.

Рис. 4.5. Трехзвенная архитектура

В сервере приложений могут быть реализованы несколько прикладных функций, каждая из которых оформляется как отдельная служба, предоставляющая некоторые услуги всем программам. Таких серверов может быть несколько, каждый из них ориентирован на предоставление некоторого набора услуг. Данная архитектура базируется на дальнейшей специализации компонентов архитектуры: клиент занимается только организацией интерфейса с пользователем, сервер БД выполняет только стандартную обработку данных, для реализации логики обработки данных архитектура предусматривает отдельный слой - слой бизнес-логики, он может представлять собой либо выделенный сервер (сервер приложений), либо размещаться на клиенте в качестве библиотеки.

В рамках архитектуры «клиент-сервер» существуют два основных понятия:

· «тонкий» клиент. Используется мощный сервер БД и библиотека хранимых процедур, позволяющих производить вычисления, реализующие основную логику обработки данных, непосредственно на сервере. Клиентское приложение, соответственно, предъявляет невысокие требования к аппаратному обеспечению рабочей станции;

· «толстый» клиент реализует основную логику обработки на клиенте, а сервер представляет собой в чистом виде сервер БД, обеспечивающий исполнение только стандартных запросов на манипуляцию с данными (как правило - чтение, запись, модификацию данных в таблицах реляционной БД).

Сетевые ИТ

Электронная почта . Возникшая самой первой, эта форма обмена электронными сообщениями (e-mail) продемонстрировала саму возможность практически мгновенного общения посредством компьютерных сетей. Архитектурно предназначенная для обмена сообщениями между двумя абонентами, она позволила обмениваться информацией группам людей. Такой модификацией стали группы или списки рассылки. С помощью ПО для работы с электронной почтой можно создавать электронные сообщения и делать вложения в них. Функция вложения используется для отправки по почте документов любого типа, например текстовых документов, электронных таблиц, мультимедиа файлов, файлов БД и т.д. Разработанное позже ПО для фильтрации текста расширило возможности электронной почты, чтобы помочь пользователю в структурировании, направлении и фильтрации сообщений. Потребность в этих услугах обусловлена тем, что постоянно растет количество почты, которая почти или совсем не нужна пользователю (Spam). ПО для фильтрации может обеспечивать доставку пользователям только персональных сообщений, содержащих важные для них новости, а также помогает находить информацию, необходимую пользователям в процессе принятия решений.

Телеконференции или группы новостей . Телеконференции - следующий этап развития систем общения. Их особенностями стали, во-первых, хранение сообщений и предоставление заинтересованным лицам доступа ко всей истории обмена, а во-вторых, различные способы тематической группировки сообщений. Такие системы проведения конференций дают возможность группе совместно работающих, но территориально разделенных людей обмениваться в режиме on-line мнениями, идеями или информацией при обсуждении какого-либо вопроса, преодолев временные и пространственные барьеры. В настоящее время существует масса разновидностей систем проведения конференций, включая компьютерные конференции (совещания, проводимые с помощью электронной почты), селекторные совещания с возможностью подключения мобильных абонентов, конференции с использованием настольных ПК, средств мультимедиа, теле- и видеоконференции.

Интерактивное общение (чаты). С развитием телекоммуникаций все большее количество пользователей начинают работать в Интернете в режиме постоянного присутствия, поэтому появился сервис общения в режиме реального времени, когда абонент получает сообщение в течение незначительного промежутка времени после отправки его собеседником.

Наиболее распространенными современными средствами интерактивного общения являются Web-приложения, которые поддерживают следующие формы организации общения:

o Гостевые книги. Первая и самая простая форма. Простейшая гостевая книга представляет собой список сообщений, показанных от последних к первым, каждое из которых оставлено в ней каким-либо посетителем.

o Форумы . Первые форумы появились как усовершенствование гостевых книг и организовывали сообщения в ветви - как в телеконференциях. Сообщения пользователей в форумах группируются по темам, которые задаются, как правило, первыми сообщениями. Все посетители могут увидеть тему и разместить свое сообщение - в ответ на уже написанные. Темы группируются в тематические форумы, управление системой осуществляют неформальные администраторы и модераторы. Наиболее развитые форумы начинают обладать первыми признаками социальных сетей - между участниками могут быть установлены долговременные социальные связи по интересам.

o Блоги (Web Log - Web-журнал, Web-протокол). В этих сервисах каждый участник ведет собственный журнал - оставляет записи в хронологическом порядке. Темы записей могут быть любыми, самый распространенный подход - это ведение блога как собственного дневника. Другие посетители могут оставлять комментарии на эти записи. В этом случае пользователь, помимо возможности вести свой журнал, получает возможность организовывать листинговый просмотр - список записей из журналов «друзей», регулировать доступ к записям, искать себе собеседников по интересам. На базе таких систем создаются сообщества по интересам - журналы, которые ведутся коллективно. В таком сообществе его членом может быть свободно размещено любое сообщение по направлению деятельности сообщества.

В целом все современные системы обеспечения работы сетевых сообществ обладают несколькими общими чертами:

· В подавляющем большинстве сообществ предусматривается регистрация пользователей, т.е. на каждого участника должна быть заведена учетная запись. При регистрации пользователь указывает некоторую информацию о себе для идентификации. Почти все системы требуют ввода адреса электронной почты и проверяют его работоспособность, высылая письмо с кодом активации учетной записи. Если адрес неверен, то активировать запись может только администратор системы. Такой подход гарантирует до определенной степени уникальность участника и его идентифицируемость.

· Работа в среде проводится сеансами. Каждый сеанс начинается с того, что пользователь указывает свое имя и подтверждает свою личность вводом пароля. Для удобства сеансовость участия обычно скрывается от пользователя техническими средствами, но, тем не менее, идентификация пользователя происходит постоянно.

· Помимо учетных данных, пользователь настраивает окружение - внешний вид, дополнительные данные о себе, указывает свои интересы, желательные контакты, темы для общения и т.д.

· Социальные сети и поддерживающие их сервисы оказались чрезвычайно эффективным методом обеспечения посещаемости сайтов, обратной связи, они постепенно стали одним из средств наполнения контента сайта содержимым, имеющим реальную коммерческую и социальную ценность.

На основе последнего подхода появилось и быстро набрало популярность довольно большое количество социальных Web-сервисов, объединенных общим названием сервисы Web 2.0. Можно указать некоторые такие ресурсы:

o Социальные закладки . Некоторые веб-сайты позволяют пользователям предоставлять в распоряжение других список закладок или популярных веб-сайтов. Такие сайты также могут использоваться для поиска пользователей с общими интересами. Пример: Delicious.

o Социальные каталоги напоминают социальные закладки, но ориентированы на использование в академической сфере, позволяя пользователям работать с БД цитат из научных статей. Примеры: Academic Search Premier, LexisNexis Academic University, CiteULike, Connotea.

o Социальные библиотеки представляют собой приложения, позволяющие посетителям оставлять ссылки на их коллекции, книги, аудиозаписи, доступные другим. Предусмотрена поддержка системы рекомендаций и рейтингов. Примеры: discogs.com, IMDb.com.

o Многопользовательские сетевые игры имитируют виртуальные миры с различными системами подсчета очков, уровней, состязательности, победителей и проигравших. Пример: World of Warcraft.

o Многоязычные социальные сети позволяют налаживать социальные связи между людьми, говорящими на разных языках. При этом используется специальное ПО, позволяющее переводить фразы с одного языка на другой в режиме реального времени. Примеры: Dudu.

o Геосоциальные сети формируют социальные связи на основании географического положения пользователя. При этом используются различные инструменты геолокации (например, GPS или гибридные системы типа технологии AlterGeo), которые дают возможность определять текущее местонахождение того или иного пользователя и соотносить его позицию в пространстве с расположением различных мест и людей вокруг.

o Профессиональные социальные сети создаются для общения на профессиональные темы, обмена опытом и информацией, поиска и предложения вакансий, развития деловых связей. Примеры: Доктор на работе, Профессионалы.ру, MyStarWay.com, LinkedIn, MarketingPeople, Viadeo.

o Сервисные социальные сети позволяют пользователям объединяться в online режиме вокруг общих для них интересов, увлечений или по различным поводам. Например, некоторые сайты предоставляют сервисы, с помощью которых пользователи могут размещать для общего доступа персональную информацию, необходимую для поиска партнеров. Примеры: LinkedIn, ВКонтакте.

o Коммерческие социальные сети ориентированы на поддержку бизнес-транзакций и формирование доверия людей к брендам на основе учета их мнений о продукте, тем самым позволяя потребителям участвовать в продвижении продукта и расширяя их осведомленность.