Тарифы Услуги Сим-карты

Как возбудить генератор с самовозбуждением на тракторе. Генераторы с независимым возбуждением. Характеристики генераторов. Вентильные сварочные генераторы

1. Железный сердечник ротора обладает некоторым остаточным магнетизмом, но его обычно недостаточно, чтобы в статарной обмотке начал генерироваться ток. Однако, даже если пропустить через обмотку возбуждения генератора ток сигнальной лампочки разряда аккумулятора мощностью всего лишь 2.2 Вт , то этого окажется достаточно для возбуждения требуемого магнитного поля.

2. Эта лампочка также сигнализирует о том, что на аккумулятор не поступает напряжение подзарядки. Она загорается при включении зажигания и горит до тех пор, пока не начнет вращаться генератор. При этом с обмоток статора через диоды пойдет ток на обмотку возбуждения ротора, разность напряжений между контактами лампочки пропадет и лампочка погаснет. Это произойдет в предположении, что на обмотку возбуждения подается со статора напряжение, примерно равное напряжению аккумулятора.

На рис. 3.15 показана принципиальная схема генератора с самовозбуждением. Она отличается по внешнему виду от схемы с внешним возбуждением наличием в ней девяти диодов.

3. В схемах автомобильного электрооборудования обычно параллельно сигнальной лампочке устанавливают еще и резистор с постоянным сопротивлением, так что ток не обмотку возбуждения при пуске двигателя будет поступать всегда, даже в случае, если лампочка перегорела.

4. При работе генератора весь необходимый ток возбуждения снимается с его статарной обмотки отсюда и происходит термин «самовозбуждение» . Ток аккумулятора используется только для того, чтобы началась генерация.

Читайте также:

  • С приходом осенне-зимних холодов начинает давать о себе знать аккумулятор. А все из-за того, что…
  • В среднем срок эксплуатации аккумуляторной батареи составляет пять лет. Длительность периода эксплуатации зависит от правильного…
  • Батарея это элемент питания, который нужен не только автомобильному транспорту, но и мотоциклу. Без тока…
  • Движение по дороге всего было достаточно опасным делом, ведь трафик обычно отличается большой плотностью. Водителю…
  • Подобное оборудование используется для того, чтобы обеспечить остановку транспортного средства по первому желанию водителя. Для…

Имя изобретателя: Филиппов А.Н.; Ермилов Н.Г.
Имя патентообладателя: Филиппов Алексей Николаевич
Адрес для переписки: 450078 Башкорстостан Уфа, ул.Алтайская 64-16, Филиппову А.Н.
Дата начала действия патента: 1996.07.23

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Ноу-хау разработки, а именно данное изобретение автора относится к электромашиностроению и может быть применено в производстве машин постоянного тока.

Существующие машины постоянного тока в своем устройстве имеют коллекторные узлы с щетками, как средство коммуникации, с преобразованием переменного тока в постоянный.

Наличие скользящих контактов во вращающейся обмотке выходного напряжения существенно снижает их надежность и усложняет эксплуатацию .

Одно из возможных исполнений содержит неподвижный индуктор, щеточно-контактный аппарат и вращающийся якорь с валом, снабженный обмоткой и коллекторным узлом.

К недостаткам описанных аналогов следует отнести:
- подвижность рабочей обмотки выходного напряжения с наличием в ней коллекторного узла с токосъемными щетками, что снижает надежность работы устройства,
- отсутствия системы самовозбуждения.

Униполярный генератор, выбранный в качестве прототипа /3/, содержит статор с зубчатым магнитопроводом, якорь с обмоткой выходного напряжения, соединенной в последовательную цепочку и индуктор.

Последовательное соединение медных стержней вращающейся обмотки выходного напряжения в устройстве прототипа выполнено посредством многочисленных щеток, установленных на каждой коллекторной пластине.

Недостатками устройства прототипа являются:
- подвижность, размещенной на валу якоря рабочей обмотки выходного напряжения с наличием в ней множественных коллекторных узлов с коммутационными пластинами и щетками токосъема,
- отсутствие устройства самовозбуждения генератора.

С целью повышения надежности и обеспечения самовозбуждения генератора предлагается новое устройство с превращением подвижной рабочей обмотки в неподвижную и с исключением на ее цепи множественных скользящих контактов. Это достигается тем, что в известном униполярном генераторе - прототипе, содержащем статор с зубчатым магнитопроводом, якорь с обмоткой выходного напряжения, соединенной в последовательную цепочку и индуктор, внесены следующие изменения:
- в устройстве установлено два индуктора, закрепленных на одном валу,
- постоянные магниты обоих индукторов установлены встречно одноименными полюсами,
- в межполюсном пространстве стационарно установлен сдвоенный зубчатый статор с кольцеобразным полым магнитопроводом,
- обмотка выходного напряжения и кольцевой пустотелый магнитопровод имеют вид тороидальной катушки с прямоугольным поперечным сечением сердечника,
- пустотелость магнитопровода выполнена для образования воздушной изоляции между магнитными потоками,
- в устройстве отсутствуют щеточно-контактные узлы как в цепи возбуждения, а также и в схеме выходного напряжения,
- устройство представляет из себя спаренные два генератора.

На фиг. 1 представлен в продольном разрезе общий вид предлагаемого устройства.

На фиг. 2 изображен магнитопровод статора с обмоткой выходного напряжения, вид сбоку.

На фиг. 3 представлен узел крепления магнитопровода статора к корпусу генератора и являющейся частью магнитопровода.

На фиг. 4 приводится электрическая схема рабочей обмотки выходного напряжения.

На фиг. 5 изображена та же электрическая схема в сечении машины.

На фиг. 6 приводится магнитопровод статора и одновитковая схема рабочей обмотки выходного напряжения.

На фиг. 7 показан индуктор генератора.

На продольном разрезе (фиг. 1) представлена конструктивная схема предлагаемого устройства, содержащего корпус генератора 1, съемные боковые щиты корпуса 2, вентиляционные прорези в щитах 3, прокладки регулирования воздушного зазора 4, вал генератора 5, вентилятор охлаждения 6, магнитопровод индуктора 7, путь магнитного потока в индукторе и статоре 8, постоянные магниты индуктора 9, воздушный зазор 10, узел крепления магнитопроводов инжекторов 11, сдвоенный сборно-разборный магнитопровод статора 12, узел крепления магнитопровода статора к корпусу 1 и являющегося его частью 13, воздушная изоляция между магнитопроводами 14, элементы активных аксиальных проводников обмотки выходного напряжения 15, выводные концы обмоток 16, болты крепления статора к корпусу генератора 17, соединительные проводники активных элементов обмотки выходного напряжения, установленные горизонтально 18, узел крепления и разъема сборно-разборного магнитопровода статора 19.

На фиг. 2 изображен магнитопровод статора 12 с обмоткой выходного напряжения 15 и выводными концами 16, пазы для укладки активных элементов обмотки выходного напряжения 20, их горизонтальные соединительные проводники 18 не видны, но их видно на чертеже по малому диаметру статора, где они расположены коаксиально валу 5. Цифрой 21 указаны отверстия для крепления магнитопровода.

На фиг. 3 показан чертеж узла крепления корпуса генератора и магнитопровода статора 13, цифрой 22 указана резьба для болтового крепления к корпусу, а цифрой 23 отверстия крепления с магнитопроводом статора 12.

На фиг. 4 показана электрическая схема последовательного соединения обмотки выходного напряжения, где цифрой 15 обозначены ее активные проводники, 16 выводные концы, соединительные проводники 18.

На фиг. 5 приводится электрическая схема последовательного соединения обмотки выходного напряжения 15 для дополнительного пояснения к фиг. 1. Скрешивание соединительных проводников 18 по малому диаметру магнитопровода показано условно, т.к. в разрезе генератора невозможно полностью изобразить схему, а фактически его не будет. Это видна по фиг. 4. На фиг. 5 под цифрой 7 указаны магнитопроводы, 8 - путь магнитного потока, 9 - постоянные магниты, 12 - магнитопровод статора, цифрой 19 указан узел крепления и разъема двух частей магнитопровода.

На фиг. 6 изображена схема обмотки выходного напряжения 15 совместно с магнитопроводом 12. Как видно, мы имеем дело с тороидальной катушкой, но с той лишь разницей, что она имеет пустотелый сердечник в виде кругового кольца и не круглого сечения, а прямоугольного. Цифрой 24 указан путь магнитного потока в магнитопроводе 12 от обмотки выходного напряжения.

На фиг. 7 изображен индуктор генератора. Цифрой 7 обозначен кольцевой магнитопровод, а 9 - дискретно рассредоточенные постоянные магниты.

Поверхности соединительных проводников 18 (фиг. 5). уложенных горизонтально в пазах 20 под прямым углом к магнитному потоку являются поверхностями равного электрического потенциала, определяемого уравнением:

U(X, Y, Z)=const,

(см. Л.Р.Нейман и П.Л.Калантаров, ТОЭ. ч. 1 ГЭИ, М.Л. 1959 г. стр. 90). Вдоль любой линии на этой поверхности имеем:

Следовательно разность потенциалов любых двух точек на участках А-С и В-G, лежащих на этой поверхности, будет равна нулю. (см. Л.Р.Нейман и П.Л. Калантаров, ТОЭ, ч. 1. ГЭИ. 1959 г., стр. 40). В отличие от поверхности проводников 15 активной части обмотки на участке A-D, которые пересекаются магнитным потоком с разной линейной скоростью в точках А и D, т.е. изменяемым магнитным потоком, поверхности соединительных проводников 18 в точках А и С, а также B-G пересекаются не изменяемым магнитным потоком и при равной линейной скорости в этих точках, т.е. в этих точках не может быть разности потенциалов, а следовательно не будет возникать и ЭДС. Потенциалы в точках А-С и B-G будут равными.

В изотропной, в отношении проводимости, среде линии тока совпадают с линиями напряженности поля, т.к. в любой точке такой среды векторы плотности тока и напряженности электрического поля, связанные соотношением d = UE имеют одно направление. Поэтому в изотропной среде линии тока пересекают поверхности равного потенциала под прямым углом (см. там же стр. 90).

Поверхность, все точки которой имеют одинаковый потенциал, называется эквипотенциальной поверхностью (см. "Справочник по элементарной физике", Наука, 1988 г. , Н.И.Кошкин и М.Г. Ширкевич, стр. 119). Работа электрических сил при перемещении заряда по эквипотенциальной поверхности равна нулю, перемещение зарядов не будет.

В замкнутом контуре выходной обмотки предлагаемого генератора будет действовать ЭДС, т. к. линейный интеграл напряженности электрического поля вдоль замкнутого контура не будет равен нулю по причине наличия разности потенциалов, причем этот линейный интеграл и равен ЭДС, действующий в контуре.

Разность потенциалов в предложенном устройстве обеспечивается за счет разности линейных скоростей пересечения проводников активной части обмотки, что вызовет изменение потокосцепления, т.к. точки проводников, удаленные от оси ротора будут пересекаться с большей линейной скоростью, нежели точки проводников, находящихся ближе к оси ротора. Встречное направление магнитных потоков в магнитопроводах 12, разделенных воздушным промежутком 14 не имеет отрицательных последствий, т. к. магнитные цепи индуктора разделены. В предложенном устройстве генератора наведение встречной ЭДС исключается, а на выходных зажимах 16 образуется постоянная по величине и однонаправленная ЭДС.

Обмотка статора, образуя тороидальную катушку, имеет не только магнитный поток в теле магнитопроводящего сердечника, но и магнитное поле во внешней среде, которое и будет взаимодействовать с однополосным магнитным потоком индуктора, что подтверждает обратимость генератора (см. рис. 34,4 и 34,6 на стр. 471 и 473, Л. Эллиот и У.Уилкокс, перевод с английского, издание 2, "Физика", издательство "Наука", Главная редакция физико-математической литературы, Москва, 1967 г.).

Используя правило правой руки, мы убедимся, что направление ЭДС от правостороннего индуктора будет во всех элементах от центральной оси, а от левостороннего индуктора, наоборот, в сторону оси. Это дает возможность создать последовательную цепочку из всех элементов обмотки выходного напряжения. Скрещивание соединительных проводников 18 по малому диаметру магнитопровода показано условно, т.к. в разрезе генератора невозможно полностью изобразить схему, а фактически его не будет. Это видно по фиг. 4.

Магнитное поле, создаваемое одноименнополюсными постоянными магнитами, будет вращающимся, т. к. каждый из них имеет свою ось намагничивания и совершает круговое движение во времени и пространстве, что подтверждается а.с. N 118302 (4).

Устройство фактически состоит их двух, совмещенных в одном изделии генераторов, работающих на одну обмотку выходного напряжения. Постоянный электрический ток образуется без средств коммутации и при отсутствии скользящих контактов, как в выходной цепи, а также и в цепи возбуждения.

Генератор выполнен с однонаправленным магнитным потоком, не изменяемым по величине и по направлению. ЭДС в активных элементах обмотки возникает по закону электромагнитной индукции в трактовке М.Фарадея, т.е. в зависимости от разности скоростей пересечения проводника по его длине магнитным потоком согласно формулы:

Все величины в этой формуле, как магнитная индукция - В, длина проводника - l и скорость - V являются постоянными величинами. Работа встречных одноименных магнитных потоков, магнитопроводы которых разделены воздушным промежутком, в практике применяется и вполне возможна (4).

Предлагаемый генератор может быть изготовлен мощностью до 10 кВт, напряжением до 500 В. Получаемое постоянное напряжение будет тем больше, чем больше последовательно соединенных активных элементов обмотки. Замена подвижных обмоток выходного напряжения на неподвижные с исключением из них множественных контактных колец с щетками токосъема существенно повышает надежность работы устройства, а замене кольцевых катушек возбуждения на постоянные магниты обеспечивает самовозбуждение генератора и создает лучшие условия для увеличения МДС с обеспечением равномерности магнитной индукции. В качестве первичного двигателя может быть использована энергия ветра, воды, двигатель внутреннего сгорания или электродвигатель.

Устройство может быть использовано в промышленности для электросварки, электролиза, зарядки аккумуляторных батарей, питания электродвигателей, для целей электротяги и на другие цели. Изложенные выше примеры не исчерпывают всех случаев применения предлагаемого генератора, а являются лишь иллюстрацией.

Устройство работает следующим образом: при вращении вала 5 генератора постоянные магниты 9 создают ЭДС в рабочей обмотке выходного напряжения. Таким образом, происходит самовозбуждение генератора. С набором оборотов генератор переходит из пускового режима в нормальный рабочий режим.

Предложенное устройство имеет существенное преимущество как перед традиционными коллекторными, а так же и перед униполярными машинами, т.к. не имеет контактов и коллекторных узлов в выходной цепи и в схеме возбуждения. Является простым, более удобным для разборки и сборки. Изменение устройства прототипа согласно принятому техническому решению обеспечивает возможность осуществления изобретения с получением положительного эффекта, а именно: повысить надежность работы генератора за счет устранения скользящих контактов с щетками как из выходной электрической цепи, а так же и из схемы возбуждения и выполнить самовозбуждение генератора. Дополнительным положительным эффектом является улучшение эксплуатации, т.к. не требуются профилактические мероприятия по контролю за щеточно-контактными узлами.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Самовозбуждающийся бесколлекторный , содержащий статор с зубчатым магнитопроводом, якорь с обмоткой выходного напряжения, соединенной в последовательную цепочку, и индуктор, отличающийся тем, что обмотка выходного напряжения выполнена неподвижной, а ее активные элементы размещены аксиально в пазах кольцевого магнитопровода статора, выполненного полым, а индуктор выполнен сдвоенным и снабжен обращенными встречно одноименнополюсными постоянными магнитами.

Главное отличие этого типа генераторов в том, что намагничивающая обмотка возбуждения питается не от постороннего источника, а от самого генератора. Поэтому они называются генераторами с самовозбуждением.

Принципиальная электрическая схема и устройство магнитной системы четырех полюсного генератора с самовозбуждением.

В коллекторных генераторах, кроме основных полюсов и обмоток, есть ещё 2 дополнительных полюса, на которых размещается по витку дополнительной последовательной обмотки. Это необходимо для компенсации магнитного потока реакции якоря и сохранения положения электрической нейтрали машины при изменении нагрузки.

Для нормальной работы генератора с самовозбуждением необходимо, чтобы напряжение, подаваемое на намагничивающую обмотку, не изменялось в процессе сварки, т.е. не зависело от режима сварки. С этой целью в генераторе установлена третья дополнительная щетка z , которая располагается между двумя основными щетками a и b . При анализе работы данного генератора необходимо учитывать магнитный поток Ф я , создаваемый сварочным током, протекающим по виткам якорной обмотки, так называемый поток реакции якоря.

Картина распределения магнитных потоков под полюсом полярности N четырехполюсного генератора

Из рисунка видно, что под одной половиной полюсов силовые линии поля якоря усиливают намагничивающий поток Ф н. а под другой - ослабляют его. В целом подмагничивающее действие потока реакции якоря компенсируется его размагничивающим действием. Поэтому при анализе работы генераторов с независимым возбуждением влияние потока реакции якоря не учитывалось.

В генераторах с самовозбуждением параметры обмотки якоря и размагничивающей обмотки подобраны так, что под одной половиной полюсов (между щетками b—z ) магнитный поток размагничивающей обмотки компенсируется потоком реакции якоря. В результате напряжение на щетках b-z будет определяться только половиной магнитного потока намагничивающей обмотки.

Таким образом, напряжение, питающее намагничивающую обмотку, оказывается независящим от сварочного тока. Падающая же характеристика генератора обеспечивается за счет размагничивающего действия размагничивающей обмотки, проявляющегося под второй половиной полюсов.

Это позволяет заключить, что регулировка режима в коллекторных генераторах с самовозбуждением такая же. как и в генераторах с независимым возбуждением.

Особенность генераторов с самовозбуждением состоит в том, что их запуск возможен только при вращении якоря, в одном направлении, указанном стрелкой на торцевой крышке статора.

Это связано с тем, что первоначальное возбуждение генератора при его запуске происходит благодаря остаточному намагничиванию полюсов. При вращении якоря в противоположную сторону в обмотке возбуждения потечет ток обратного направления, который своим нарастающим магнитным полем в какой-то момент времени компенсирует остаточное намагничивание полюсов, т.е. суммарный магнитный поток под полюсами станет равным нулю. В этом случае для возбуждения генератора необходимо намагничивающую обмотку временно подсоединить к независимому источнику постоянного тока.


Агрегат АДД-303 с коллекторным генератором

ВЕНТИЛЬНЫЕ СВАРОЧНЫЕ ГЕНЕРАТОРЫ

Появились в середине 70-х годов 20 века после освоения производства силовых кремниевых вентилей. В этих генераторах функцию выпрямления тока вместо коллектора выполняет полупроводниковый выпрямитель, на который подается переменное напряжение генератора.

В сварочных агрегатах применяются генераторы три типа конструкции генераторов переменного тока: индукторный, синхронный и асинхронный

Конструкции генераторов переменного тока:

а — индукторного, б — синхронного, в — асинхронного

В России сварочные агрегаты выпускаются с индукторными генераторами с самовозбуждением, независимым возбуждением и со смешанным возбуждением.

Схема вентильного генератора с самовозбуждением

Схемы однофазного и трехфазного вентильных генераторов с независимым возбуждением

Конструктивная схема и связь параметров индукторного генератора

В индукторном генераторе неподвижная обмотка возбуждения питается постоянным током, но создаваемый ею магнитный поток имеет переменный характер. Он максимален при совпадении зубцов ротора и статора, когда магнитное сопротивление на пути потока минимально, и минимален при совпадении впадин ротора и статора.

Следовательно. ЭДС , наводимая этим потоком, тоже переменная. Три рабочие обмотки расположены на статоре со сдвигом на 120°, поэтому на выходе генератора образуется трехфазное переменное напряжение. Падающая характеристика генератора получается за счет большого индуктивного сопротивления самого генератора. Реостат в цепи возбуждения служит для плавной регулировки сварочного тока.

Отсутствие скользящих контактов (между щетками и коллектором) делает данный генератор более надежным в эксплуатации. Кроме того, у него более высокий КПД, меньшие масса и габариты, чем у коллекторного генератора. Значительно можно улучшить и динамические характеристики.

Принципиальная электрическая схема вентильного генератора типа ГД-312 с самовозбуждением

ВСХ генератора ГД-312

Для обеспечения работы на холостом ходу питание обмотки возбуждения осуществляется от трансформатора напряжения, а для питания ее в режиме короткого замыкания - от трансформатора тока. В режиме нагрузки - сварки - на обмотку возбуждения подается смешанный сигнал управления пропорциональный части выходного напряжения и пропорциональный току.

Вентильные генераторы выпускаются марки ГД-312 и применяются для ручной сварки металлов в составе агрегатов типа АДБ

Схемы соединения обмоток трехфазного индукторного генератора

Вентильный генератор ГД-4006

Принципиальная схема генератора ГД-4006

ВСХ генератора ГД-4006

В России выпускают несколько конструкций многопостовых агрегатов с количеством постов от 2х до 4х.

На рынке представлены универсальные агрегаты для нескольких способов сварки или сварки и плазменной резки. В частности агрегат АДДУ-4001ПР

Устройство агрегата АДДУ-4001ПР

Формирование исскуственных ВСХ агрегата АДДУ-4001ПР обеспечивается тиристорным силовым блоком с микропроцессорным управлением.

Более широкие технологические возможности обеспечивает применение в агрегатах инверторных силовых блоков, как например в агрегате Vantage500.

Инверторные источники питания.

Инвертирование в преобразовательной технике - это преобразование постоянного напряжения в переменное.

Инверторы сварочных источников питания выполняются на силовых тиристорах и транзисторах. Тиристорные инверторы проигрывают транзисторным по максимальной частоте преобразования (на порядок) и соответственно по массогабаритным показателям. Поэтому в производстве сварочных ИП они в настоящее время почти полностью вытеснены транзисторными инверторами.

Рассмотрим одну из широко применяемых схем транзисторного инвертирования.

Выпрямитель V1 преобразует напряжение сети (~380В, 50Гц) в постоянное, неравномерность которого сглаживается фильтром L1С1. Инвертор на транзисторах VT1-VT2 преобразует постоянное напряжение в переменное высокочастотное (~ 50 кГц). Далее напряжение (~ 380 В) понижается трансформатором Т до сварочного (80 В), выпрямляется выпрямителем V2 и сглаживается фильтром L2- C2. Поскольку трансформируется переменный ток большой частоты, то трансформатор изготавливается не с железным, а с ферритовым сердечником, что снижает его вес примерно в 10 раз. Поскольку частота трансформируемого тока большая, то сокращается длительность переходных процессов с n*10 -2 с до 10 -3 с и менее.

В настоящее время основную часть инверторного оборудования для сварочного производства составляют ИП с высокочастотными трансформаторами, поскольку условия электробезопасности при ручной сварке и сварке шланговыми полуавтоматами, а также при плазменной резке требуют гальванической развязки вторичной цепи от силовой сети.

Регулировка режима (получение падающей вольтамперной характеристики и регулировка вторичного напряжения на жёсткой характеристике) как правило осуществляется путём изменения частоты.

Осциллограммы при регулировании напряжения изменением амплитуды (а), частоты (б) и ширины (в) импульсов

Для получения падающей характеристики вводится обратная связь по току: с его увеличением автоматически снижается частота, что влечет уменьшение выходного напряжения. Для стабилизации выходного напряжения на жестких характеристиках вводится обратная связь по напряжению.

Внешние характеристики выпрямителей с инвертором

В 80-х годах и до середины 90-х годов инверторные выпрямители выпускались небольшой мощности (до 160 А), для работы на монтаже и для бытовых нужд. В середине 90-х появилось новое поколение так называемых полевых транзисторов, способных выдерживать большие токи. Это позволило приступить к выпуску промышленных инверторов на токи 300-500 А.

Современные переключающие приборы: МОП-транзистор (а); биполярный транзистор с изолированным затвором (б); транзисторно-диодный модуль — чоппер (в); силовой модуль с оптимизированным управлением и комплексной внутренней защитой (г)

В сварочных ИП с силовыми транзисторами используется несколько схем инвертирования.

Однотактный преобразователь с прямым включением диода

Однотактный преобразователь с обратным включением диода

Двухтактный мостовой преобразователь

Двухтактный полумостовой преобразователь

Резонансный двухтактный мостовой преобразователь

Реальные силовые схемы инверторных ИП могут существенно отличаться от типовых.

Выпрямитель ДС.250.33

Выпрямитель Сaddy Arc 150

Выпрямитель InvertecV350-РRО

Выпрямитель Форсаж-160

Ток возбуждения у большинства генераторов является частью тока якоря. При пуске в ход генератора сначала ток в якоре, а следо­вательно, и в обмотке возбуждения отсутствует, но в массивной станине всегда сохраняется небольшой магнит­ный поток Ф r остаточного намагничи­вания, равный 1-3 % нормального ра­бочего потока машины. Когда первичный двигатель вращает якорь генератора, остаточный поток индуктирует в обмот­ке якоря небольшую ЭДС. В случае ге­нератора с параллельным возбуждением эта ЭДС E я, х создает некоторый ток i B в обмотке возбуждения, а следовательно, возникает некоторая МДС возбуждения. По отношению к магнитному потоку Ф г она может быть направлена согласно или встречно, т. е. подмагничивать или размагничивать магнитопровод машины. Для самовозбуж­дения необходимо согласное направление, что имеет место при пра­вильном соединении обмотки возбуждения с якорем. При таком со­единении напряженность поля от тока возбуждения усиливает магнит­ное поле машины, а последнее индуктирует большую ЭДС в обмотке якоря. Возрастание ЭДС вызывает дальнейшее увеличение тока воз­буждения. Ограничение самостоятельного увеличения потока и тока возбуждения связано с насыщением магнитной цепи машины.

После окончания переходного процесса ЭДС в обмотке якоря Е я и ток возбуждения I в будут иметь постоянные значения. Найдем эти значения, воспользовавшись характеристикой холостого хода машины (рис. 13.26). Если пренебречь сопротивлением цепи якоря r я по сравнению с сопротивлением цепи возбуждения r в, то устано­вившийся ток возбуждения r в определяется из условия Е я = r в I в. Этому условию на графике соответствует точка пересечения характе­ристики холостого хода Е я (I B) и прямой Е я = r в I в, т. е. точка А. Тангенс угла наклона прямойЕ я = r в I в к оси абсцисс зависит от r в. Если уменьшать I в, например вводя реостат в цепь возбуждения, то точка пересечения смещается влево (А"). При достаточно большом сопротивлении цепи возбуждения, называемом критическим, машина не возбуждается.

Если в машине отсутствует остаточная намагниченность (из-за короткого замыкания или механических ударов), то для ее восстанов­ления нужен посторонний источник постоянного тока хотя бы малой мощности. Этот источник нужно на короткий срок замкнуть на обмотку возбуждения размагнитившейся машины, а затем использовать создан­ное остаточное намагничивание для нормального возбуждения.

Явления самовозбуждения используются в генераторах с параллель­ным и смешанным возбуждением.

13.10. Генераторы с параллельным, последовательным и смешанным возбуждением

У генератора с параллельным возбуждением часть тока якоря слу­жит для возбуждения основного магнитного поля машины (рис. 13.27). Эти генераторы наиболее часто применяются для получения постоян­ного тока, так как они не требуют дополнительного источника электро­энергии для цепи возбуждения, что существенно упрощает обслужи­вание машины; вместе с тем напряжение таких генераторов мало изме­няется из-за колебаний нагрузки.

При пуске в ход генератора с параллельным возбуждением для создания магнитного потока в магнитопроводе используется выше описанное явление самовозбуждения.

Характеристика холостого хода генератора при параллельном возбуждении практически не отличается от характеристики при неза­висимом возбуждении, так как влияние на эту характеристику изме­нения напряжения r в 1 в и реакции якоря оттока возбуждения ничтожно. Это совпадение вида характеристик имеет место и для регулировочной характеристики.

Но внешняя характеристика при параллельном возбуждении гене­ратора (а) идет значительно ниже, чем при независимом возбуждении () (рис. 13.28). Причиной этому является уменьшение тока возбужде­ния при понижении напряжения, так как I в = U / r B . При независимом возбуждении понижение напряжения между выводами генератора при увеличении тока якоря вызывается двумя причинами: увеличением напряжения на активном сопротивлении якоря и реакцией якоря. При параллельном возбуждении к этим двум причинам добавляется третья - уменьшение тока возбуждения. Пока этот ток соответствует условиям насыщения магнитной цепи генератора (пологой части маг­нитной характеристики), уменьшение ЭДС якоря меньше уменьшения тока возбуждения (рис. 13.29). В таких условиях при уменьшении сопротивления цепи нагрузки ток якоря возрастает. Но условия резко изменяются, когда в результате увеличения тока якоря и вызванного этим понижения напряжения ток возбуждения уменьшается настолько, что магнитная цепь генератора оказывается в ненасыщенном состоянии. В условиях линейной части магнитной характеристики уменьшение тока возбуждения вызывает пропорциональное уменьшение потока и ЭДС якоря, что вызывает дальнейшее уменьшение тока возбуждения, а это в свою очередь обусловливает новое по­нижение ЭДС и т. д. Имеет место своеобразное саморазмагничивание генератора, заканчиваю­щееся тем, что в машине при коротком замыкании якоря сохраняется только остаточная намагниченность, под­держивающая ограниченный (меньше номинального) ток короткого замыкания.


Ток якоря, при котором машина переходит в режим саморазмагни­чивания, называется критическим I кр. Его значение больше номиналь­ного в 2-2,5 раза. Участок внешней характеристики ниже I кр (штри­ховая линия на рис. 3.28) соответствует неустойчивому режиму.

Номинальное изменение напряжения у генератора при параллель­ном возбуждении значительно больше, чем при независимом, и состав­ляет 8-15 %.

В генераторе с последовательным возбуждением якорь соединен последовательно с обмоткой возбуждения, благодаря чему ток нагрузки является вместе с тем током возбуждения (рис. 13.30). Обмотка воз­буждения w такой машины выполняется из провода, рассчитанного на большой ток якоря; число витков такой обмотки мало.

При холостом ходе генератора с последовательным возбуждением ЭДС в обмотке его якоря будет индуктироваться только потоком оста­точного намагничивания. Следовательно, у этого генератора нельзя снять характеристику холостого хода. Отсутствует также у него и регулировочная характеристика.

Напряжение этого генератора (рис. 13.31) сначала возрастает с увеличением тока якоря. Затем вид характеристики начинает изме­няться из-за магнитного насыщения (ЭДС якоря перестает увеличи­ваться, в то время как продолжает возрастать напряжение на активном сопротивлении якоря) и размагничивающего действия реакции якоря. В результате напряжение генератора при дальнейшем возрастании нагрузки уменьшается. Из-за непостоянства напряжения генераторы с последовательным возбуждением применяются лишь в немногих специальных случаях.

Генератор со смешанным возбуждением имеет две обмотки возбужден ния: параллельную w пар и последовательную w пос (рис. 13.32). У такого генератора напряжение остается практически постоянным при изме­нениях нагрузки в определенных пределах. Это достигается путем использования последовательного возбуждения для компенсации уве­личения падения напряжения на активном сопротивлении якоря и уменьшения тока в параллельной обмотке возбуждения, а также для компенсации размагничивающего действия якоря при увеличении тока нагрузки. Благодаря наличию обмотки последовательного воз­буждения

главный магнитный поток генератора и вместе с ним ЭДС Е я возрастают g увеличением нагрузки. Соответствующим подбором числа витков обмотки последовательного возбуждения можно достичь равенства напряжений генератора при холостом ходе и при номинальной на­грузке (кривая а на рис. 13.33).

Генератор со смешанным возбуждением удобен в установках относительно небольшой мощности для предупреждения возникнове­ния значительных изменений напряжения при отключениях отдельных потребителей. Но использование таких генераторов для параллельной работы обычно неудобно: случайное понижение частоты вращения первичного двигателя генератора может снизить ЭДС генератора до уровня, меньшего напряжения сети, из-за этого ток в якоре генератора и в его последовательной обмотке возбуждения изменит свое направле­ние, что может вызвать перемагничивание генератора и тяжелую ава­рию установки.

Генератор с самовозбуждением

Генератор качающейся частоты – это генератор, который вырабатывает электрические колебания. Генератор в переводе с латинского языка означает «производитель», т. е. это устройство, которое производит определенный продукт. Колебания в нем не затухают при подаче части переменного напряжения с выхода на вход генератора. В радиотехнике его называют осциллятором – системой, возбуждающей колебания относительно какого-нибудь положения равновесия.

Генератор с самовозбуждением представляет собой устройство, благодаря которому энергия постоянного тока преобразуется в энергию электромагнитных колебаний, возникающих без внешнего воздействия.

Структура такого генератора содержит два основных звена. Это звено обратной связи с коэффициентом передачи и усилительное звено.

К самовозбуждению генератор подталкивает положительная обратная связь, которая позволяет генератору перейти в режим установившихся колебаний.

При включении напряжения питания в генераторе возникают малые колебания. На них влияет положительная обратная связь, действие которой увеличивается за счет усилительного каскада. Колебания передаются по цепи положительной обратной связи на выход усилителя. Сигнал постоянно возрастает при обходе усилителя и обратной связи, пока не устанавливается режим колебаний. Переход к такому режиму возможен за счет уменьшения наклона амплитуды сигнала. Усилитель должен быть нелинейным, потому что линейное звено способствовало бы возрастанию амплитуды самовозбужденных колебаний.

Генератор производит, как правило, одночастотное колебание, а нагрузкой является параллельный колебательный контур. Сопротивление контура активно, на резонансной частоте максимально.

В усилительном звене генератора применяются операционные усилители и транзисторы, биполярные и полевые. Частоту производящихся колебаний определяет баланс амплитуд на определенной частоте, в связи с соответствием усилителя с резонансной нагрузкой резонансной же частоте контура.

От выбранного рабочего режима для генератора с самовозбуждением зависит процесс генерации колебаний. Режим определяется коэффициентом обратной связи и питающим напряжением. При выборе режима важно обращать внимание на положение рабочей точки на усилительном элементе, зависящей от напряжения смещения. Самовозбуждение легко возникает при расположении рабочей точки в области большой крутизны. Обратное положение рабочей точки приостанавливает, затрудняет самовозбуждение генератора. Существует два режима возбуждения: жесткий и мягкий. При жестком режиме рабочая точка смещается в левую сторону, напряжение смещения отсутствует. В результате этого небольшие колебания контура не могут вызвать самовозбуждение. Мягкий режим возникает тогда, когда рабочая точка лежит на прямолинейном участке усилительного элемента.

Процесс самовозбуждения проходит беспрепятственно, увеличивается амплитуда тока базы и в то же время возрастает амплитуда выходного напряжения.

Для эксплуатации генератора с самовозбуждением необходимо использовать оба перечисленных режима возбуждения, т. е. комбинированную схему смещения. В момент включения удобен мягкий режим, но в дальнейшем он приводит к большим потерям в схеме генератора, поэтому после установления мягкого надо перейти к жесткому режиму.

Одним из главнейших параметров генератора с самовозбуждением считается стабильность частоты. Ее количественной оценкой выступает обратная величина. Эта обратная величина представляет собой относительную нестабильность частоты. Под влиянием дестабилизирующих факторов параметры генератора меняются, в результате чего изменяются и фазовые углы. Любопытно, что после этой операции в генераторе устанавливается другой стационарный режим колебаний и сумма фазовых углов снова соответствует соотношению.

Повысить стабильность, так необходимую генератору с самовозбуждением, можно с помощью нескольких приемов. Путем параметрической стабилизации – при поддержке постоянства колебательной системы и нужных параметров генератора. Для осуществления такой стабилизации необходимо поддерживать постоянство питающих напряжений и защищать колебательную систему от влияния внешних воздействий. Повысить стабильность можно и другим путем. Для этого необходимо выбрать такие схему и режим работы генератора, при которых фазовые углы изменялись бы незначительно. Еще один вариант повышения стабильности заключается в компенсации изменений температуры элементов генератора, причем они должны быть противоположными другим изменениям по своему характеру. Этим элементом может быть колебательный контур, который увеличивается с повышением температуры. И, наконец, последний способ добиться стабилизации – с использованием кварцевых резонаторов, которые обладают высокой стабильностью как колебательные системы.

Существуют синхронные генераторы с самовозбуждением серии SJ, которые предназначаются для долгого режима работы как источник переменного тока. Они работают в составе передвижных и стационарных агрегатов. Такие генераторы могут работать автономно, параллельно с другими генераторами, а также с жесткой сетью.

Двигатели внутреннего сгорания, электродвигатели и различные турбины используются в качестве привода такого генератора.

Генератор с самовозбуждением применяется в радиопередающих устройствах, где он генерирует энергию постоянного и переменного тока в энергию радиочастотных колебаний.