Тарифы Услуги Сим-карты

Операционные системы. Cтруктура файловой системы Linux

Многие пользователи компьютерных систем наверняка в той или иной степени сталкивались с понятием исполняемого файла программы. Исполняемые файлы не всегда, но довольно часто имеют расширение EXE, которое является общепринятым для операционных систем семейства Windows. Чтобы немного прояснить вопрос, связанный с расширениями, мы рассмотрим общую информацию об этих объектах, а также рассмотрим некоторые типы основных расширений.

Чем исполняемые файлы отличаются от других объектов

Прежде чем утверждать, что исполняемый файл программы может иметь расширение только одного определенного типа, необходимо разобраться в том, как отличить такой объект от других. К основным отличиям исполняемых файлов от других информационных данных можно отнести следующие факторы: само расширение, которое указывает на содержание в файле либо машинного, либо байт-кода виртуальной машины, сигнатура, атрибуты в файловой системе. Однако даже если пользователь знает, что исполняемые файлы имеют расширение имени типа EXE, то обычными средствами посмотреть содержимое не получится, поскольку такие объекты обладают компилированным содержимым, которые отображается при просмотре в виде бессмысленного набора символов. В общем случае пользователю придется использовать средства Disassembler, или что-то подобное, что позволяет выполнить декомпиляцию. Но речь пойдет не об этом.

Исполняемые файлы: структура

Что же касается построения исполняемых файлов, то они должны содержать заголовки (предполагаемое выполнение инструкций, параметры и форматы кода) и непосредственно сами инструкции (исходные, машинные или байт-коды). В некоторых случаях в структуру могут быть включены данные для отладки, описания окружения, требования к операционной системе, списки соответствующих библиотек, звук, графика, изображения, иконки ярлыков и тому подобное. Многие из вас наверняка обращали внимание на то, что в большинстве своем у каждого такого файла в операционной системе изначально имеется иконка.

Принцип работы

Несмотря на то, что исполняемые файлы могут иметь расширение различных типов, работают они по одному принципу. Исполняемый файл при запуске загружается в память компьютера. При этом осуществляется настройка окружения и инициализация, подтягиваются дополнительные библиотеки, если их использование предусмотрено программой. Также на данном этапе происходит настройка некоторых дополнительных операций и само исполнение инструкций теми методами, которые прописаны непосредственно в файле.

Исполняемые файлы программ: какое расширение они имеют?

Теперь перейдем к рассмотрению вопроса, связанного с расширениями. Разумеется, совершенно все типы рассмотреть не получится, это займет очень много времени. Мы отметим только наиболее распространенные и популярные варианты. Итак, расширение задается в зависимости от типа содержимого. Так, например, в операционной системе типа Windows наиболее распространенные исполняемые файлы обладают расширением EXE. Это относится ко всем программам, которые рассчитаны на работу в среде данных операционных систем. Такие объекты содержат в себе машинные коды. Файлы BIN являются очень похожими. Пакетные файлы типа CMD, BAT и COM являются еще одним типом исполняемых файлов. Первый тип в данном случае является пакетным файлом Windows. Файлы второго и третьего типа относятся к операционным системам семейства DOS. Многие из вас вероятно уже встречали файлы типа MSI иMSU. Это может быть установщик обновлений системы, или родной инсталлятор операционной системы Windows. Отдельную категорию файлов составляют макросы и скрипты. Это файлы с расширениями JSE, JS, SCR,VBE, VBS, VB. Часто также встречаются файлы JAD иJAR, которые предназначены для установки приложений в мобильные устройства или использование в среде JAVA. В своем содержании такие объекты имеют уже не машинные коды, а коды виртуальных машин.

Какое расширение имеют исполняемые файлы в различных ОС?

Если внимательно посмотреть, то можно заметить, что в некоторых ОС встречаются довольно специфичные компоненты. Так, например, в операционной системе Windows имеется специальная категория исполняемых файлов. Вообще, в любой операционной системе можно найти как стандартные, так и специальные компоненты. Однако имеются и некоторые общие форматы, например, HTA, исполняемый документ HTML. Они работают практически везде вне зависимости от используемого типа операционной системы. Что же касается других типов систем, то, например, в «маках» исполняемые файлы обладают расширением APP для программ и PKG для дистрибутивов. В операционных системах семейства Linux дело обстоит немного иначе. Проблема заключается в том, что в таких операционных системах понятие расширения вообще отсутствует. Можно распознать исполняемый файл по атрибутам, например, системный, скрытый, только для чтения и т.д. В результате проблема изменения расширения для запуска или прочтения искомого файла пропадает. Впрочем, в любой операционной системе даже на мобильных устройствах можно найти огромное число объектов данного типа. Не нужно далеко ходить. В той же операционной системе семейства Android исполняемый файл установщика имеет расширение APK. В яблочных устройствах исполняемые файлы имеют расширение IPA.

Заключение

Подведем итог нашего небольшого обзора о расширении исполняемых файлов. Упор в данном случае делался в основном на объекты, которые присутствуют в операционных системах семейства Windows. Остальные операционные системы были затронуты только вскользь для общего развития. Как уже стало ясно, разнообразие исполняемых файлов очень велико. Невозможно привести какую-то сводную таблицу с указанием совершенно всех типов расширений. Поэтому в данной статье мы ограничились только наиболее распространенными форматами

Лекция 3. Файловая структура

Литература

o Современные операционные системы, Э. Таненбаум, 2002, СПб, Питер, 1040 стр., (в djvu 10.1Мбайт) подробнее>>

o Сетевые операционные системы Н. А. Олифер, В. Г. Олифер (в zip архиве 1.1Мбайт)

o Сетевые операционные системы Н. А. Олифер, В. Г. Олифер, 2001, СПб, Питер, 544 стр., (в djvu 6.3Мбайт)подробнее>>

Файлы

Требования к хранению информации:

o возможность хранения больших объемов данных

o информация должна сохраняться после прекращения работы процесса

o несколько процессов должны иметь одновременный доступ к информации

2.1.1Именование файлов

Длина имени файла зависит от ОС, может быть от 8 (MS-DOS) до 255 (Windows, LINUX) символов.

ОС могут различать прописные и строчные символы. Например, WINDOWS и windows для MS-DOS одно и тоже, но для UNIX это разные файлы.

Во многих ОС имя файла состоит из двух частей, разделенных точкой, например windows.exe. Часть после точки называют расширением файла . По нему система различает тип файла.

У MS-DOS расширение составляет 3 символа. По нему система различает тип файла, а также можно его исполнять или нет.

У UNIX расширение ограничено размером имени файла в 255 символов, также у UNIX может быть несколько расширений, но расширениями пользуются больше прикладные программы, а не ОС. По расширению UNIX не может определить исполняемый это файл или нет.

2.1.2Структура файла

Три основные структуры файлов:

1. Последовательность байтов - ОС не интересуется содержимым файла, она видит только байты. Основное преимущество такой системы, это гибкость использования. Используются в Windows и UNIX.

2. Последовательность записей - записей фиксированной длины (например, перфокарта), считываются последовательно. Сейчас не используются.

3. Дерево записей - каждая запись имеет ключ, записи считываются по ключу. Основное преимущество такой системы, это скорость поиска. Пока еще используется на мэйнфреймах.

Три типа структур файла.

2.1.3Типы файлов

Основные типы файлов:

o Регулярные - содержат информацию пользователя. Используются в Windows и UNIX.

o Каталоги - системные файлы, обеспечивающие поддержку структуры файловой системы. Используются в Windows и UNIX.

o Символьные - для моделирования ввода-вывода. Используются только в UNIX.

o Блочные - для моделирования дисков. Используются только в UNIX.

Основные типы регулярных файлов:

o ASCII файлы - состоят из текстовых строк. Каждая строка завершается возвратом каретки (Windows), символом перевода строки (UNIX) и используются оба варианта (MS-DOS). Поэтому если открыть текстовый файл, написанный в UNIX, в Windows, то все строки сольются в одну большую строку, но под MS-DOS они не сольются (это достаточно частая ситуация ). Основные преимущества ASCII файлов:
- могут отображаться на экране, и выводится на принтер без преобразований
- могут редактироваться почти любым редактором

o Двоичные файлы - остальные файлы (не ASCII). Как правило, имеют внутреннею структуру.

Основные типы двоичных файлов:

o Исполняемые - программы, их может обрабатывать сама операционная система, хотя они записаны в виде последовательности байт.

o Неисполняемые - все остальные.

Примеры исполняемого и не исполняемого файла

«Магическое число» - идентифицирующее файл как исполняющий.

2.1.4Доступ к файлам

Основные виды доступа к файлам:

o Последовательный - байты читаются по порядку. Использовались, когда были магнитные ленты.

2.1.5Атрибуты файла

Основные атрибуты файла:

o Защита - кто, и каким образом может получить доступ к файлу (пользователи, группы, чтение/запись). Используются в Windows и UNIX.

o Пароль - пароль к файлу

o Создатель - кто создал файл

o Владелец - текущий владелец файла

o Флаг "только чтение" - 0 - для чтения/записи, 1 - только для чтения. Используются в Windows.

o Флаг "скрытый" - 0 - виден, 1 - невиден в перечне файлов каталога (по умолчанию). Используются в Windows.

o Флаг "системный" - 0 - нормальный, 1 - системный. Используются в Windows.

o Флаг "архивный" - готов или нет для архивации (не путать сжатием). Используются в Windows.

o Флаг "сжатый" - файл сжимается (подобие zip архивов). Используются в Windows.

o Флаг "шифрованный" - используется алгоритм шифрования. Если кто-то попытается прочесть файл, не имеющий на это прав, он не сможет его прочесть. Используются в Windows.

o Флаг ASCII/двоичный - 0 - ASCII, 1 - двоичный

o Флаг произвольного доступа - 0 - только последовательный, 1 - произвольный доступ

o Флаг "временный" - 0 - нормальный, 1 - для удаления файла по окончании работы процесса

o Флаг блокировки - блокировка доступа к файлу. Если он занят для редактирования.

o Время создания - дата и время создания. Используются UNIX.

o Время последнего доступа - дата и время последнего доступа

o Время последнего изменения - дата и время последнего изменения. Используются в Windows и UNIX.

o Текущий размер - размер файла. Используются в Windows и UNIX.

2.1.6Операции с файлами

Основные системные вызовы для работы с файлами:

o Create - создание файла без данных.

o Delete - удаление файла.

o Open - открытие файла.

o Close - закрытие файла.

o Read - чтение из файла, с текущей позиции файла.

o Write - запись в файл, в текущею позицию файла.

o Append - добавление в конец файла.

o Seek - устанавливает файловый указатель в определенную позицию в файле.

o Get attributes - получение атрибутов файла.

o Set attributes - установить атрибутов файла.

o Rename - переименование файла.

Понимание файловой системы Linux, структуры каталогов, размещения конфигурационных, исполняемых и временных файлов поможет вам лучше разбираться в своей системе и стать успешным системным администратором. Файловая система Linux будет непривычна именно для новичка, только что перешедшего с Windows, ведь здесь все совсем по-другому. В отличие от Windows, программа не находится в одной папке, а, как правило, распределена по корневой файловой системе. Это распределение поддается определенным правилам. Вы когда-нибудь задавались вопросом, почему некоторые программы находятся в папке /bin, или /sbin, /usr/sbin, /usr/local/bin, в чем разница между этими каталогами?

Например, программа less, находится в каталоге /usr/bin, но почему не в /sbin или /usr/sbin. А такие программы, как ifconfig или fdisk находятся в каталоге /sbin и нигде иначе.

В этой статье будет полностью рассмотрена структура файловой системы Linux, после ее прочтения вы сможете понять смысл использования большинства папок в корневом каталоге Linux.

/ - корень

Это главный каталог в системе Linux. По сути, это и есть файловая система Linux. Здесь нет дисков или чего-то подобного, как в Windows. Вместо этого, адреса всех файлов начинаются с корня, а дополнительные разделы, флешки или оптические диски подключаются в папки корневого каталога.

Обратите внимание, что у пользователя root домашний каталог /root, но не сам /.

/bin - (binaries) бинарные файлы пользователя

Этот каталог содержит исполняемые файлы. Здесь расположены программы, которые можно использовать в однопользовательском режиме или режиме восстановления. Одним словом, те утилиты, которые могут использоваться пока еще не подключен каталог /usr/. Это такие общие команды, как cat, ls, tail, ps и т д.

/sbin - (system binaries) системные исполняемые файлы

Так же как и /bin, содержит двоичные исполняемые файлы, которые доступны на ранних этапах загрузки, когда не примонтирован каталог /usr. Но здесь находятся программы, которые можно выполнять только с правами суперпользователя. Это разные утилиты для обслуживания системы. Например, iptables, reboot, fdisk, ifconfig,swapon и т д.

/etc - (etcetera) конфигурационные файлы

В этой папке содержатся конфигурационные файлы всех программ, установленных в системе.

Кроме конфигурационных файлов, в системе инициализации Init Scripts, здесь находятся скрипты запуска и завершения системных демонов, монтирования файловых систем и автозагрузки программ. Структура каталогов linux в этой папке может быть немного запутанной, но предназначение всех их - настройка и конфигурация.

/dev - (devices) файлы устройств

В Linux все, в том числе внешние устройства являются файлами. Таким образом, все подключенные флешки, клавиатуры, микрофоны, камеры - это просто файлы в каталоге /dev/. Этот каталог содержит не совсем обычную файловую систему. Структура файловой системы Linux и содержащиеся в папке /dev файлы инициализируются при загрузке системы, сервисом udev. Выполняется сканирование всех подключенных устройств и создание для них специальных файлов. Это такие устройства, как: /dev/sda, /dev/sr0, /dev/tty1, /dev/usbmon0 и т д.

/proc - (proccess) информация о процессах

Это тоже необычная файловая система, а подсистема, динамически создаваемая ядром. Здесь содержится вся информация о запущенных процессах в реальном времени. По сути, это псевдофайловая система, содержащая подробную информацию о каждом процессе, его Pid, имя исполняемого файла, параметры запуска, доступ к оперативной памяти и так далее. Также здесь можно найти информацию об использовании системных ресурсов, например, /proc/cpuinfo, /proc/meminfo или /proc/uptime. Кроме файлов в этом каталоге есть большая структура папок linux, из которых можно узнать достаточно много информации о системе.

/var (variable) - Переменные файлы

Название каталога /var говорит само за себя, он должен содержать файлы, которые часто изменяются. Размер этих файлов постоянно увеличивается. Здесь содержатся файлы системных журналов, различные кеши, базы данных и так далее. Дальше рассмотрим назначение каталогов Linux в папке /var/.

/var/log - Файлы логов

/var/lib - базы данных

Еще один тип изменяемых файлов - это файлы баз данных, пакеты, сохраненные пакетным менеджером и т д.

/var/mail - почта

В эту папку почтовый сервер складывает все полученные или отправленные электронные письма, здесь же могут находиться его логи и файлы конфигурации.

/var/spool - принтер

Изначально, эта папка отвечала за очереди печати на принтере и работу набора программ cpus.

/var/lock - файлы блокировок

Здесь находятся файлы блокировок. Эти файлы означают, что определенный ресурс, файл или устройство занят и не может быть использован другим процессом. Apt-get, например, блокирует свою базу данных, чтобы другие программы не могли ее использовать, пока программа с ней работает.

/var/run - PID процессов

Содержит файлы с PID процессов, которые могут быть использованы, для взаимодействия между программами. В отличие от каталога /run данные сохраняются после перезагрузки.

/tmp (temp) - Временные файлы

В этом каталоге содержатся временные файлы, созданные системой, любыми программами или пользователями. Все пользователи имеют право записи в эту директорию.

Файлы удаляются при каждой перезагрузке. Аналогом Windows является папка Windows\Temp, здесь тоже хранятся все временные файлы.

/usr - (user applications) Программы пользователя

Это самый большой каталог с большим количеством функций. Тут наиболее большая структура каталогов Linux. Здесь находятся исполняемые файлы, исходники программ, различные ресурсы приложений, картинки, музыку и документацию.

/usr/bin/ - Исполняемые файлы

Содержит исполняемые файлы различных программ, которые не нужны на первых этапах загрузки системы, например, музыкальные плееры, графические редакторы, браузеры и так далее.

/usr/sbin/

Содержит двоичные файлы программ для системного администрирования, которые нужно выполнять с правами суперпользователя. Например, таких как Gparted, sshd, useradd, userdel и т д.

/usr/lib/ - Библиотеки

Содержит библиотеки для программ из /usr/bin или /usr/sbin.

/usr/local - Файлы пользователя

Содержит файлы программ, библиотек, и настроек созданные пользователем. Например, здесь могут храниться программы собранные и установленные из исходников и скрипты, написанные вручную.

/home - Домашняя папка

В этой папке хранятся домашние каталоги всех пользователей. В них они могут хранить свои личные файлы, настройки программ и т д. Например, /home/sergiy и т д. Если сравнивать с Windows, то это ваша папка пользователя на диске C, но в отличии от WIndows, home как правило размещается на отдельном разделе, поэтому при переустановке системы все ваши данные и настройки программ сохранятся.

/boot - Файлы загрузчика

Содержит все файлы, связанные с загрузчиком системы. Это ядро vmlinuz, образ initrd, а также файлы загрузчика, находящие в каталоге /boot/grub.

/lib (library) - Системные библиотеки

Содержит файлы системных библиотек, которые используются исполняемыми файлами в каталогах /bin и /sbin.

Библиотеки имеют имена файлов с расширением *.so и начинаются с префикса lib*. Например, libncurses.so.5.7. Папка /lib64 в 64 битных системах содержит 64 битные версии библиотек из /lib. Эту папку можно сравнить с WIndows\system32, там тоже сгружены все библиотеки системы, только там они лежат смешанные с исполняемыми файлами, а здесь все отдельно.

/opt (Optional applications) - Дополнительные программы

В эту папку устанавливаются проприетарные программы, игры или драйвера. Это программы созданные в виде отдельных исполняемых файлов самими производителями. Такие программы устанавливаются в под-каталоги /opt/, они очень похожи на программы Windows, все исполняемые файлы, библиотеки и файлы конфигурации находятся в одной папке.

/mnt (mount) - Монтирование

В этот каталог системные администраторы могут монтировать внешние или дополнительные файловые системы.

/media - Съемные носители

В этот каталог система монтирует все подключаемые внешние накопители - USB флешки, оптические диски и другие носители информации.

/srv (server) - Сервер

В этом каталоге содержатся файлы серверов и сервисов. Например, могут содержаться файлы веб-сервера apache.

/run - процессы

Еще один каталог, содержащий PID файлы процессов, похожий на /var/run, но в отличие от него, он размещен в TMPFS, а поэтому после перезагрузки все файлы теряются.

/sys (system) - Информация о системе

Назначение каталогов Linux из этой папки - получение информации о системе непосредственно от ядра. Это еще одна файловая система организуемая ядром и позволяющая просматривать и изменить многие параметры работы системы, например, работу swap, контролировать вентиляторы и многое другое.

память загрузчиком операционной системы и затем исполнен. В операционной системе Windows исполняемые файлы, как правило, имеют расширения ".exe" и ".dll". Расширение ".exe" имеют программы, которые могут быть непосредственно запущены пользователем. Расширение ".dll" имеют так называемые динамически связываемые библиотеки ( dynamic link libraries). Эти библиотеки экспортируют функции, используемые другими программами.

Для того чтобы загрузчик операционной системы мог правильно загрузить исполняемый файл в память , содержимое этого файла должно соответствовать принятому в данной операционной системе формату исполняемых файлов. В разных операционных системах в разное время существовало и до сих пор существует множество различных форматов. В этой главе мы рассмотрим формат Portable Executable (PE). Формат PE - это основной формат для хранения исполняемых файлов в операционной системе Windows . Сборки. NET тоже хранятся в этом формате.

Кроме того, формат PE может использоваться для представления объектных файлов . Объектные файлы служат для организации раздельной компиляции программы. Смысл раздельной компиляции заключается в том, что части программы (модули) компилируются независимо в объектные файлы , которые затем связываются компоновщиком в один исполняемый файл .

А теперь - немного истории. Формат PE был создан разработчиками Windows NT. До этого в операционной системе Windows использовались форматы New Executable (NE) и Linear Executable (LE) для представления исполняемых файлов, а для хранения объектных файлов использовался Object Module Format (OMF). Формат NE предназначался для 16-разрядных приложений Windows , а формат LE, изначально разработанный для OS/2 , был уже 32-разрядным. Возникает вопрос: почему разработчики Windows NT решили отказаться от существующих форматов? Ответ становится очевидным, если обратить внимание на то, что большая часть команды, работавшей над созданием Windows NT, ранее работала в Digital Equipment Corporation. Они занимались в DEC разработкой инструментария для операционной системы VAX / VMS , и у них уже были навыки и готовый код для работы с исполняемыми файлами, представленными в формате Common Object File Format ( COFF ). Соответственно, формат COFF в слегка модифицированном виде был перенесен в Windows NT и получил название PE.

В ". NET Framework Glossary " сказано, что PE - это реализация Microsoft формата COFF . В то же время в утверждается, что PE - это формат исполняемых файлов, а COFF - это формат объектных файлов . Вообще, мы можем наблюдать путаницу в документации Microsoft относительно названия формата. В некоторых местах они называют его COFF , а в некоторых - PE. Правда, можно заметить, что в новых текстах название COFF используется все меньше и меньше. Более того, формат PE постоянно эволюционирует. Например, несколько лет назад в Microsoft отказались от хранения отладочной информации внутри исполняемого файла, и поэтому теперь многие поля в структурах формата COFF просто не используются. Кроме того, формат COFF - 32-разрядный, а последняя редакция формата PE (она называется PE32+) может использоваться на 64-разрядных аппаратных платформах. Поэтому, видимо, дело идет к тому, что название COFF вообще перестанут использовать.

Интересно отметить, что исполняемые файлы в устаревших форматах NE и LE до сих пор поддерживаются Windows . Исполняемые файлы в формате NE можно запускать под управлением NTVDM (NT Virtual DOS Machine), а формат LE используется для виртуальных драйверов устройств (

2.1 Файлы

Требования к хранению информации:

    возможность хранения больших объемов данных

    информация должна сохраняться после прекращения работы процесса

    несколько процессов должны иметь одновременный доступ к информации

2.1.1 Именование файлов

Длина имени файла зависит от ОС, может быть от 8 (MS-DOS) до 255 (Windows, LINUX) символов.

ОС могут различать прописные и строчные символы. Например, WINDOWS и windows для MS-DOS одно и тоже, но для UNIX это разные файлы.

Во многих ОС имя файла состоит из двух частей, разделенных точкой, например windows.exe. Часть после точки называют расширением файла . По нему система различает тип файла.

У MS-DOS расширение составляет 3 символа. По нему система различает тип файла, а также можно его исполнять или нет.

У UNIX расширение ограничено размером имени файла в 255 символов, также у UNIX может быть несколько расширений, но расширениями пользуются больше прикладные программы, а не ОС. По расширению UNIX не может определить исполняемый это файл или нет.

2.1.2 Структура файла

Три основные структуры файлов:

    Последовательность байтов - ОС не интересуется содержимым файла, она видит только байты. Основное преимущество такой системы, это гибкость использования. Используются в Windows и UNIX.

    Последовательность записей - записей фиксированной длины (например, перфокарта), считываются последовательно. Сейчас не используются.

    Дерево записей - каждая запись имеет ключ, записи считываются по ключу. Основное преимущество такой системы, это скорость поиска. Пока еще используется на мэйнфреймах.

Три типа структур файла.

2.1.3 Типы файлов

Основные типы файлов:

    Регулярные - содержат информацию пользователя. Используются в Windows и UNIX.

    Каталоги - системные файлы, обеспечивающие поддержку структуры файловой системы. Используются в Windows и UNIX.

    Символьные - для моделирования ввода-вывода. Используются только в UNIX.

    Блочные - для моделирования дисков. Используются только в UNIX.

Основные типы регулярных файлов:

    ASCII файлы - состоят из текстовых строк. Каждая строка завершается возвратом каретки (Windows), символом перевода строки (UNIX) и используются оба варианта (MS-DOS). Поэтому если открыть текстовый файл, написанный в UNIX, в Windows, то все строки сольются в одну большую строку, но под MS-DOS они не сольются (это достаточно частая ситуация ). Основные преимущества ASCII файлов:
    - могут отображаться на экране, и выводится на принтер без преобразований
    - могут редактироваться почти любым редактором

    Двоичные файлы - остальные файлы (не ASCII). Как правило, имеют внутреннею структуру.

Основные типы двоичных файлов:

    Исполняемые - программы, их может обрабатывать сама операционная система, хотя они записаны в виде последовательности байт.

    Неисполняемые - все остальные.

Примеры исполняемого и не исполняемого файла

«Магическое число» - идентифицирующее файл как исполняющий.

2.1.4 Доступ к файлам

Основные виды доступа к файлам:

    Последовательный - байты читаются по порядку. Использовались, когда были магнитные ленты.

2.1.5 Атрибуты файла

Основные атрибуты файла:

    Защита - кто, и каким образом может получить доступ к файлу (пользователи, группы, чтение/запись). Используются в Windows и UNIX.

    Пароль - пароль к файлу

    Создатель - кто создал файл

    Владелец - текущий владелец файла

    Флаг "только чтение" - 0 - для чтения/записи, 1 - только для чтения. Используются в Windows.

    Флаг "скрытый" - 0 - виден, 1 - невиден в перечне файлов каталога (по умолчанию). Используются в Windows.

    Флаг "системный" - 0 - нормальный, 1 - системный. Используются в Windows.

    Флаг "архивный" - готов или нет для архивации (не путать сжатием). Используются в Windows.

    Флаг "сжатый" - файл сжимается (подобие zip архивов). Используются в Windows.

    Флаг "шифрованный" - используется алгоритм шифрования. Если кто-то попытается прочесть файл, не имеющий на это прав, он не сможет его прочесть. Используются в Windows.

    Флаг ASCII/двоичный - 0 - ASCII, 1 - двоичный

    Флаг произвольного доступа - 0 - только последовательный, 1 - произвольный доступ

    Флаг "временный" - 0 - нормальный, 1 - для удаления файла по окончании работы процесса

    Флаг блокировки - блокировка доступа к файлу. Если он занят для редактирования.

    Время создания - дата и время создания. Используются UNIX.

    Время последнего доступа - дата и время последнего доступа

    Время последнего изменения - дата и время последнего изменения. Используются в Windows и UNIX.

    Текущий размер - размер файла. Используются в Windows и UNIX.

2.1.6 Операции с файлами

Основные системные вызовы для работы с файлами:

    Create - создание файла без данных.

    Delete - удаление файла.

    Open - открытие файла.

    Close - закрытие файла.

    Read - чтение из файла, с текущей позиции файла.

    Write - запись в файл, в текущею позицию файла.

    Append - добавление в конец файла.

    Seek - устанавливает файловый указатель в определенную позицию в файле.

    Get attributes - получение атрибутов файла.

    Set attributes - установить атрибутов файла.

    Rename - переименование файла.

2.1.7 Файлы, отображаемые на адресное пространство памяти

Иногда удобно файл отобразить в памяти (не надо использовать системные вызовы ввода-вывода для работы с файлом), и работать с памятью, а потом записать измененный файл на диск.

При использовании страничной организации памяти, файл целиком не загружается, а загружаются только необходимые страницы.

При использовании сегментной организации памяти, файл загружают в отдельный сегмент.

Пример копирования файла через отображение в памяти.

Алгоритм:

    Создается сегмент для файла 1

    Файл отображается в памяти

    Создается сегмент для файла 2

    Сегмент 1 копируется в сегмент 2

    Сегмент 2 сохраняется на диске

Недостатки этого метода:

    Тяжело определить длину выходного файла

    Если один процесс отобразил файл в памяти и изменил его, но файл еще не сохранен, второй процесс откроет это же файл, и будет работать с устаревшим файлом.

    Файл может оказаться большим, больше сегмента или виртуального пространства.

2.2 Каталоги

2.2.1 Одноуровневые каталоговые системы

В этой системе все файлы содержатся в одном каталоге.

Однокаталоговая система, содержащая четыре файла, файлов А два, но разных владельцев

Преимущества системы:

    Простота

    Возможность быстро найти файл, не надо лазить по каталогам

Недостатки системы:

    Различные пользователи могут создать файлы с одинаковыми именами.

2.2.2 Двухуровневые каталоговые системы

Для каждого пользователя создается свой собственный каталог.

Двухуровневая каталоговая система

Пользователь, при входе в систему, попадает в свой каталог и работает только с ним. Это делает проблематичным использование системных файлов.

Эту проблему можно решить созданием системного каталога, с общим доступом.

Если у одного пользователя много файлов, то у него тоже может возникнуть необходимость в файлах с одинаковыми именами.

2.2.3 Иерархические каталоговые системы

Каждый пользователь может создавать столько каталогов, сколько ему нужно.

Иерархическая каталоговая система

Почти все современные универсальные ОС, организованы таким образом. Специализированным ОС это может быть не нужным.

2.2.4 Имя пути

Для организации дерева каталогов нужен некоторый способ указания файла.

Два основных метода указания файла:

    абсолютное имя пути - указывает путь от корневого каталога, например:
    - для Windows \usr\ast\mailbox
    - для UNIX /usr/ast/mailbox
    - для MULTICS >usr>ast>mailbox

    относительное имя пути - путь указывается от текущего каталога (рабочего каталога), например:
    - если текущий каталог /usr/, то абсолютный путь /usr/ast/mailbox перепишется в ast/mailbox
    - если текущий каталог /usr/ast/, то абсолютный путь /usr/ast/mailbox перепишется в mailbox
    - если текущий каталог /var/log/, то абсолютный путь /usr/ast/mailbox перепишется в../../usr/ast/mailbox

./ - означает текущий каталог

../ - означает родительский каталог

2.2.5 Операции с каталогами

Основные системные вызовы для работы с каталогами:

    Create - создать каталог

    Delete - удалить каталог

    OpenDir - закрыть каталог

    CloseDir - закрыть каталог

    Rename - переименование каталога