Тарифы Услуги Сим-карты

Тсп протокол. Процедуры управления потоком TCP. Разница между протоколами TCP и UDP

TCP - это транспортный механизм, предоставляющий поток данных, с предварительной установкой соединения, за счёт этого дающий уверенность в достоверности получаемых данных, осуществляет повторный запрос данных в случае потери данных и устраняет дублирование при получении двух копий одного пакета. В отличие от UDP , гарантирует, что приложение получит данные точно в такой же последовательности, в какой они были отправлены, и без потерь.

Протокол TCP используется в тех случаях, когда требуется надежная доставка сообщений. Он освобождает прикладные процессы от необходимости использовать таймауты и повторные передачи для обеспечения надежности. Наиболее типичными прикладными процессами, использующими TCP, являются FTP (File Transfer Protocol - протокол передачи файлов) и TELNET. Кроме того, TCP используют система X-Window, rcp (remote copy - удаленное копирование) и другие "r-команды". Большие возможности TCP даются не бесплатно. Реализация TCP требует большой производительности процессора и большой пропускной способности сети. Внутренняя структура модуля TCP гораздо сложнее структуры модуля UDP.

Реализация TCP, как правило, встроена в ядро системы, хотя есть и реализации TCP в контексте приложения.

Когда осуществляется передача от компьютера к компьютеру через Internet, TCP работает на верхнем уровне между двумя конечными системами, например, интернет-браузер и интернет-сервер. Также TCP осуществляет надежную передачу потока байт от одной программы на некотором компьютере в другую программу на другом компьютере. Программы для электронной почты и обмена файлами используют TCP. TCP контролирует длину сообщения, скорость обмена сообщениями, сетевой трафик.

Когда прикладной процесс начинает использовать TCP, то модуль TCP на машине клиента и модуль TCP на машине сервера начинают общаться. Эти два оконечных модуля TCP поддерживают информацию о состоянии соединения, называемого виртуальным каналом. Этот виртуальный канал потребляет ресурсы обоих оконечных модулей TCP. Канал является дуплексным; данные могут одновременно передаваться в обоих направлениях. Один прикладной процесс пишет данные в TCP-порт, они проходят по сети, и другой прикладной процесс читает их из своего TCP-порта.

Протокол TCP разбивает поток байт на пакеты; он не сохраняет границ между записями. Например, если один прикладной процесс делает 5 записей в TCP-порт, то прикладной процесс на другом конце виртуального канала может выполнить 10 чтений для того, чтобы получить все данные. Но этот же процесс может получить все данные сразу, сделав только одну операцию чтения. Не существует зависимости между числом и размером записываемых сообщений с одной стороны и числом и размером считываемых сообщений с другой стороны.

Протокол TCP требует, чтобы все отправленные данные были подтверждены принявшей их стороной. Он использует таймауты и повторные передачи для обеспечения надежной доставки. Отправителю разрешается передавать некоторое количество данных, не дожидаясь подтверждения приема ранее отправленных данных. Таким образом, между отправленными и подтвержденными данными существует окно уже отправленных, но еще неподтвержденных данных. Количество байт, которые можно передавать без подтверждения, называется размером окна. Как правило, размер окна устанавливается в стартовых файлах сетевого программного обеспечения. Так как TCP-канал является дуплексным, то подтверждения для данных, идущих в одном направлении, могут передаваться вместе с данными, идущими в противоположном направлении. Приемники на обеих сторонах виртуального канала выполняют управление потоком передаваемых данных для того, чтобы не допускать переполнения буферов.

Схема работы пользовательского приложения с TCP в общих чертах состоит в следующем. Для передачи данных пользовательскому процессу надо вызвать соответствующую функцию TCP, с указанием на буфер передаваемых данных. TCP упаковывает эти данные в сегменты своего стека и вызывает функцию передачи протокола нижнего уровня, например IP.

На другом конце, получатель TCP группирует поступившие от протокола нижнего уровня данные в принимающие сегменты своего буфера, проверяет целостность данных, передает данные пользовательскому процессу и уведомляет отправителя об их получении.

Пользовательский интерфейс с TCP может выполнять такие команды как открыть (OPEN) или закрыть соединение (CLOSE), отправить (SEND) или принять (RECEIVE) данные, а также получить состояние соединения (STATUS).

В модели межсетевого соединения взаимодействие TCP и протоколов нижнего уровня, как правило, не специфицировано, за исключением того, что должен существовать механизм, который обеспечивал бы асинхронную передачу информации от одного уровня к другому. Результатом работы этого механизма является инкапсуляция протокола более высокого уровня в тело протокола более низкого уровня. Реализуется этот механизм через интерфейс вызовов между TCP и IP.

В результате работы этого механизма каждый TCP пакет вкладывается в «конверт» протокола нижнего уровня, например, IP. Получившаяся таким образом дейтаграмма содержит в себе TCP-пакет так же как TCP пакет содержит пользовательские данные.

Краткое описание протоколов семейства TCP/IP с расшифровкой аббревиатур

  • ARP (Address Resolution Protocol, протокол определения адресов) : конвертирует 32-разрядные IP-адреса в физические адреса вычислительной сети, например, в 48-разрядные адреса Ethernet.
  • FTP (File Transfer Protocol, протокол передачи файлов) : позволяет передавать файлы с одного компьютера на другой с использованием TCP-соединений. В родственном ему, но менее распространенном протоколе передачи файлов - Trivial File Transfer Protocol (TFTP) - для пересылки файлов применяется UDP, а не TCP.
  • ICMP (Internet Control Message Protocol, протокол управляющих сообщений Internet) : позволяет IP-маршрутизаторам посылать сообщения об ошибках и управляющую информацию другим IP-маршрутизаторам и главным компьютерам сети. ICMP-сообщения "путешествуют" в виде полей данных IP-дейтаграмм и обязательно должны реализовываться во всех вариантах IP.
  • IGMP (Internet Group Management Protocol, протокол управления группами Internet) : позволяет IP-дейтаграммам распространяться в циркулярном режиме (multicast) среди компьютеров, которые принадлежат к соответствующим группам.
  • IP (Internet Protocol, протокол Internet) : низкоуровневый протокол, который направляет пакеты данных по отдельным сетям, связанным вместе с помощью маршрутизаторов для формирования Internet или интрасети. Данные "путешествуют" в форме пакетов, называемых IP-дейтаграммами.
  • SMTP (Simple Mail Transfer Protocol, простой протокол обмена электронной почтой) : определяет формат сообщений, которые SMTP-клиент, работающий на одном компьютере, может использовать для пересылки электронной почты на SMTP-сервер, запущенный на другом компьютере.
  • TCP (Transmission Control Protocol, протокол управления передачей) : протокол ориентирован на работу с подключениями и передает данные в виде потоков байтов. Данные пересылаются пакетами - TCP-сегментами, - которые состоят из заголовков TCP и данных. TCP - "надежный" протокол, потому что в нем используются контрольные суммы для проверки целостности данных и отправка подтверждений, чтобы гарантировать, что переданные данные приняты без искажений.
  • UDP (User Datagram Protocol, протокол пользовательских дейтаграмм) : протокол, не зависящий от подключений, который передает данные пакетами, называемыми UDP-дейтаграммами. UDP - "ненадежный" протокол, поскольку отправитель не получает информацию, показывающую, была ли в действительности принята дейтаграмма.

Состав и предназначение полей заголовка

ТСР-сегменты отправляются как IP-дейтаграммы. Заголовок TCP, следующий за IP-заголовком, содержит информацию TCP-протокола.

Source Port (16 бит). Порт отправителя.

Destination Port (16 бит). Порт получателя.

Sequence Number (32 бита). Номер кадра. Номер кадра первого октета данных в этом сегменте (за исключением пакета, где присутствует флаг SYN). Если в пакете присутствует флаг SYN, то номер данного пакета становится номером начала последовательности (ISN) и номером первого октета данных становится номер ISN+1.

Acknowledgment Number (32 бита). Поле номера кадра подтвержденного получения. Если пакет содержит установленный контрольный бит АСК, то это поле содержит номер следующего пакета данных отправителя, который ожидает получатель. При установленном соединении пакет подтверждения отправляется всегда.

Data Offset (4 бита). Поле величины смещения данных. Оно содержит количество 32-битных слов заголовка TCP-пакета. Это число определяет смещение расположения данных в пакете.

Reserved (6 бит). Резервное поле. Поле зарезервировано.

Флаги управления (слева направо):

  • URG: Флаг срочности
  • АСК: Флаг пакета, содержащего подтверждение получения
  • PSH: Флаг форсированной отправки
  • RST: Переустановка соединения
  • SYN: Синхронизация чисел последовательности
  • FIN: Флаг окончания передачи со стороны отправителя

Window (16 бит). Окно. Это поле содержит количество байт данных, которое отправитель данного сегмента может принять, отсчитанное от номера байта, указанного в поле Acknowledgment Number.

Checksum (16 бит). Поле контрольной суммы. Это поле содержит 16 бит суммы побитных дополнений 16-битных слов заголовка и данных. Если сегмент содержит нечетное число байт заголовка и данных, последний байт дополняется справа нулями. При вычислении контрольной суммы поле контрольной суммы полагается равным нулю.

Urgent Pointer (16 бит). Поле указателя срочных данных. Это поле содержит значение счетчика пакетов, начиная с которого следуют пакеты повышенной срочности. Это поле принимается во внимание только в сегментах с установленным флагом URG.

Options. Поле дополнительных параметров: может быть переменной длины.

Padding. Заполнение: переменная длина. Заполнение (нулями) TCP-заголовка используется для выравнивания его по 32-битному слову.

Эта ссылка на наглядное видео. К сожалению, оно на английском языке, но и так понятно.

На канальном и сетевом уровне протоколов TCP / IP пакета , которые касаются основного механизма передачи блоков данных между странами и между сетями, являются основами TCP / IP . Они используют стек протоколов, но они не используются непосредственно в приложениях, которые работают по протоколу TCP / IP . В этой статье мы рассмотрим два протокола, которые используются приложениями: User Datagram Protocol (UDP) и Transmission Control Protocol (TCP).

Протокол дейтаграммы пользователя
User Datagram Protocol очень простой протокол. Как и IP , это надежный протокол без соединений. Вам не нужно устанавливать соединение с хостом для обмена данными с ним, используя UDP , и не существует механизма для обеспечения передаваемых данных.
Блок данных, передаваемых с помощью UDP называется датаграммой. UDP добавляет четыре 16-битных поля заголовка (8 байт) к передаваемым данным. Эти поля: длина поля, поле контрольной суммы, а также источник и номер порта назначения. «Порт», в этом контексте, представляет собой программное обеспечение порта, а не аппаратный порт.
Концепция номера порта является общей для обоих UDP и TCP . Номера портов определяют, какой модуль протокола направляет (или получает) данные. Большинство протоколов имеют стандартные порты, которые обычно используются для этого. Например, протокол Telnet обычно использует порт 23. Simple Mail Transfer Protocol (SMTP), использует порт 25. Использование стандартных номеров портов позволяет клиентам взаимодействовать с сервером без предварительной установки, какой порт использовать.
Номер порта и протокола в поле в заголовка IP дублируют друг друга в какой-то степени, хотя поля протокола не доступны для протоколов более высокого уровня. IP использует поле протокола, чтобы определить, куда должны быть переданы данные на UDP или TCP модули. UDP или TCP используют номер порта, чтобы определить, какой протокол прикладного уровня, должен получать данные.
Несмотря на то, UDP не является надежным, он все еще подходящий выбор для многих приложений. Он используется приложениями в реальном времени, такими как потоковое аудио и видео, где, если данные будут потеряны, то лучше обойтись без него, чем отправить его снова по порядку. Он также используется протоколами, такими как Simple Network Management Protocol (SNMP).
Трансляция
UDP подходит для информационного вещания, поскольку он не требует подключения к открытой связи.Цели широковещательного сообщения определяются отправителем, на указанный в IP-адрес назначения. UDP датаграммы с адресом назначения IP все бинарные 255.255.255.255) и будет получен каждый хост в локальной сети. Обратите внимание на слово местные: дейтаграммы с таким адресом не будут приняты маршрутизатором к Интернету.
Передачи могут быть направлены на конкретные сети. UDP датаграммы с хоста и подсети части IP-адреса, установленные как бинарные транслируются на все узлы на всех подсетях сети, которая соответствует чистой части IP-адреса. Если только принимающая сторона (другими словами, все биты, которые равны нулю в маске подсети) устанавливается в бинарные, то вещание ограничено для всех хостов в подсети, который соответствует остальной части адреса.
Многоадресная рассылка используются для передачи данных в группе хостов, которые выразили желание их получать. Многоадресная UDP датаграмма имеет адрес назначения, в котором первые четыре бита 1110, предоставлены адреса в диапазоне 224.xxx в 239.xxx Остальные биты адреса используются для обозначения группы многоадресной рассылки. Это, скорее, как радио-или телеканал. Так, например, 224.0.1.1 используется для протокола NTP. Если TCP / IP приложения хотят получить многоадресное сообщение, они должны присоединиться к соответствующей группе многоадресной рассылки, что он и делает, передавая адрес группы в стек протоколов.
Широкое вещание, по сути, фильтруют передачу. Multicaster не рассматривает индивидуальные сообщения для каждого хоста, который присоединяется к группе. Вместо этого, сообщения в эфир, и драйвера на каждом хосте решают, следует ли игнорировать их или передать содержимое стеку протоколов.
Это означает, что многоадресные сообщения должны транслироваться по всему Интернету, так как multicaster не знает, какие хосты хотят получать сообщения. К счастью, это не является необходимым. IP использует протокол под названием Internet Group Management Protocol (IGMP), чтобы сообщить маршрутизаторам, какие хосты хотят получать сообщения многоадресной группы, так что сообщения отправляются только туда, где они необходимы.
Протокол управления передачей
Transmission Control Protocol является протоколом транспортного уровня и используется большинством интернет-приложений, такими как Telnet, FTP и HTTP. Это протокол с установлением соединения. Это означает, что два компьютера - один клиент, другой сервер и между ними необходимо установить соединение до того, как данные могут передаваться между ними.
TCP обеспечивает надежность. Приложение, которое использует TCP знает, что он отправляет данные полученные на другом конце, и что он получил их правильно. TCP использует контрольные суммы, как на заголовках,так и на данных. При получении данных, TCP посылает подтверждение обратно к отправителю. Если отправитель не получает подтверждения в течение определенного периода времени, данные отправляются повторно.
TCP включает в себя механизмы обеспечения данных, которые поступают в обратной последовательности, в порядке как они были отправлены. Он также реализует управление потоком, так что отправитель не может подавить приемник данных.
TCP передает данные, используя IP, в блоках, которые называются сегментами. Длина отрезка определяется протоколом. В дополнение к IP-заголовку, каждый сегмент состоит из 20 байт заголовка. Заголовок TCP начинается с 16-битного источника и поля назначения номера порта. Как и UDP , эти поля определяют уровень приложения, которые направлены и на получение данных. IP-адрес и номер порта, вместе взятые однозначно идентифицируют службы, работающие на хозяина, и пары известной как гнездо.
Далее в заголовке идет 32-битный порядковый номер. Это число определяет позицию в потоке данных, что должен занимать первый байт данных в сегменте. Порядковый номер TCP позволяет поддерживать поток данных в правильном порядке, хотя сегменты могут быть получены из последовательности.
Следующее поле представляет собой 32-битное поле, которое используется для передачи обратно отправителю, что данные были получены правильно. Если ACK флаг, которым он обычно и бывает, то это поле содержит положение следующего байта данных, что отправитель сегмента ожидает получить.
В TCP нет необходимости для каждого сегмента данных, которые будут признаны. Значение в поле подтверждения интерпретируется как «все данные до сих пор получены ОК». Это экономит полосу пропускания, когда все данные направляются в одну сторону, уменьшая потребность в признании сегментов. Если данные одновременно отправляються в обоих направлениях, как в полной дуплексной связи, то марки не связаны с расходами,так как сегмент передачи данных в одну сторону может содержать подтверждение для данных, передаваемых по-другому.
Далее в заголовке представляется 16-битное поле, содержащее длину заголовка и флаги. TCP заголовки могут содержать дополнительные поля, так что длина может варьироваться от 20 до 60 байт. Флаги: URG, ACK (который мы уже упоминали), PSH, RST, SYN и FIN. Позже,мы рассмотрим некоторые другие флаги.
Заголовок содержит поле, называемое размером окна, что дает количество байт, которые приемник может принять. Также существует 16-битная контрольная сумма, охватывающая как заголовок,так и данные. Наконец (до дополнительных данных) есть поле называемое «указатель срочности». Когда флаг URG установлен, это значение интерпретируется как смещение порядкового номера. Он определяет начало данных в потоке, которые должны быть обработаны в срочном порядке. Эти данные часто называют данными «вне группы». Пример её использования, когда пользователь нажимает клавишу перерыв, чтобы прервать выход из программы во время Telnet сессии.

На транспортном уровне стека TCP/IP используются два основных протокола: TCP и UDP . Общее представление о функциях транспортного уровня можно получит в соответствующей статьей. В данном тексте речь пойдёт о протоколе TCP (Transmission Control Protocol), который используется для обеспечения надёжной доставки данных на транспортном уровне.

Существуют общие задачи транспортного уровня, с которыми справляется как TCP, так и UDP . Основных задач собственно две: сегментация данных , приходящих с уровня приложений и адресация приложений (передающего и принимающего) при помощи портов. Подробнее об этом можно прочесть в статье, посвященной транспортному уровню .

Помимо этого, TCP обеспечивает:

  • Надёжную доставку сегментов.
  • Упорядочивание сегментов при получении.
  • Работу с сессиями.
  • Контроль за скоростью передачи.

Рассмотрим эти возможности более детально.

Надёжная доставка сегментов

Под надёжной доставкой подразумевается автоматическая повторная пересылка недошедших сегментов. Каждый сегмент маркируется при помощи специального поля - порядкового номера (sequence number). После отправки некоторого количества сегментов, TCP на отправляющем узле ожидает подтверждения от получающего, в котором указывается порядковый номер следующего сегмента, который адресат желает получить. В случае, если такое подтверждение не получено, отправка автоматически повторяется. После некоторого количества неудачных попыток, TCP считает, что адресат не доступен, и сессия разрывается.

Таким образом, надёжная доставка не означает, что ваши данные дойдут в случае, если кто-то выдернул кабель из коммутатора. Она означает, что разработчик ПО, использующий TCP на транспортном уровне знает, что если сессия не разорвалась, то всё что он поручил отправить будет доставлено получателю без потерь. Существует множество данных, критичных к потере любой порции информации. Например, если вы скачиваете приложение из интернета, то потеря одного байта будет означать, что вы не сможете воспользоваться тем что скачали. По этой причине многие протоколы уровня приложений используют для транспорта TCP.

Упорядочивание сегментов при получении

Как несложно догадаться, каждый сегмент на нижний уровнях TCP/IP обрабатывается индивидуально. То есть, как минимум, он будет запакован в индивидуальный пакет. Пакеты идут по сети и промежуточные маршрутизаторы в общем случае уже ничего не знают о том, что запаковано в эти пакеты. Часто пакеты с целью балансировки нагрузки могут идти по сети разными путями, через разные промежуточные устройства, с разной скоростью. Таким образом получатель, декапсулировав их, может получить сегменты не в том порядке, в котором они отправлялись.

TCP автоматически пересоберёт их в нужном порядке используя всё то же поле порядковых номеров и передаст после склейки на уровень приложений.

Работа с сессиями

Перед началом передачи полезных данных, TCP позволяет убедиться в том, что получатель существует, слушает нужный отправителю порт и готов принимать данные для этого устанавливается сессия при помощи механизма трёхстороннего рукопожатия (three-way handshake), о котором можно прочесть в соответствующей статье. Далее, в рамках сессии передаются полезные пользовательские данные. После завершения передачи сессия закрывается, тем самым получатель извещается о том, что данных больше не будет, а отправитель извещается о том, что получатель извещён.

Контроль за скоростью передачи

Контроль за скоростью передачи позволяет корректировать скорость отправки данных в зависимости от возможностей получателя. Например, если быстрый сервер отправляет данные медленному телефону, то сервер будет передавать данные с допустимой для телефона скоростью.

Благодаря механизму скользящего окна (sliding window), TCP может работать с сетями разной надёжности. Механизм плавающего окна позволяет менять количество пересылаемых байтов, на которые надо получать подтверждение от адресата. Чем больше размер окна, тем больший объём информации будет передан до получения подтверждения. Для надёжных сетей подтверждения можно присылать редко, чтобы не добавлять трафика, поэтому размер окна в таких сетях автоматически увеличивается. Если же TCP видит, что данные теряются, размер окна автоматически уменьшается. Это связанно с тем, что если мы передали, например, 3 килобайта информации и не получили подтверждения, то мы не знаем, какая конкретно часть из них не дошла и вынуждены пересылать все три килобайта заново. Таким образом, для ненадёжных сетей, размер окна должен быть минимальным.

Механизм скользящего окна позволяет TCP постоянно менять размер окна - увеличивать его пока всё нормально и уменьшать, когда сегменты не доходят. Таким образом, в любой момент времени размер окна будет более или менее адекватен состоянию сети.

Структура TCP

Заголовок TCP сегмента имеет следующую структуру:

  • Source port и Destination port - это соответственно номера портов получателя и отправителя, идентифицирующие приложений на отправляющем и принимающем узлах.
  • Sequence number и Acknowledgment number - это порядковый номер сегмента и номер подтверждения, которые используются для надёжной доставки. Например, если отправитель шлёт сегмент с SN 100, то получатель может ответить на него ACK 101 SN200, что означает: «Я получил твой сегмент с номером 100 и жду от тебя 101-го, кстати, у меня своя нумерация. Мои номера начинаются с 200» Отправитель, в свою очередь, может ответить SN101 ACK201, что означает «Я получил от тебя сегмент с номером 200, могу принять следующий 201-ый, а вот тебе мой 101-ый сегмент, которого ты ждёшь». Ну и так далее.
  • Header length - Это четырёхбитное поле, содержащее в себе длину заголовка TCP сегмента.
  • Reserved - 6 зарезервированных на всякий случай бит.
  • Control - поле с флагами, которые используются в процессе обмена информацией и описывают дополнительное назначение сегмента. Например, флаг FIN используется для завершения соединений, SYN и ACK - для установки.
  • Window - содержит размер окна, о чём было сказано выше.
  • Checksumm - контрольная сумма заголовка и данных.
  • Urgent - признак важности (срочности) данного сегмента.
  • Options - дополнительное необязательное поле, которое может использоваться, например, для тестирования протокола.
  • В разделе данных содержатся собственно данные, полученные от протокола уровня приложений, либо их кусок, если данные пришлось разбивать.

Многим знакома аббревиатура TCP, гораздо меньшее количество людей знает, что это протокол передачи данных. Но практически никто не знает, как он устроен.

Внимание! Этот материал рассчитан на тех, кого действительно интересуется вопросом: «Как устроена сеть, и что я могу сделать, если буду это знать». Если же тебя еще смущают слова вроде DNS, Telnet, Socket — то можешь сразу забить на этот материал — такие «страшные» слова тут конечно не встретятся, но от этого содержание понятней не станет…

Для тех кто остался:

Наверное, многие из вас слышали такие слова как SYN-flooding или IP-spoofing. Все это разновидности атак — первая D.O.S., вторая
состоит в подмене IP-адреса. На первый взгляд между этими примерами нет ничего общего, но между тем, это не так — обе эти атаки не возможны без глубокого знания протокола TCP, протокола на котором стоит
Inet.

Спецификация протокола TCP описана в RFC793 . Рекомендую тебе ознакомится с этим документом, потому как хоть я и постараюсь повести до тебя самое важное, снабдив это важное соответствующими комментариями, которых ты не найдешь в мануале, но все же из-за малого объема и практического угла зрения, могу и упустить некоторые тонкости.

Данные, передаются в виде пакетов. Такая организация передачи означает, что данные, какого размера они ни были, разбиваются на отдельные фрагменты, которые формируются в пакеты (формирование пакетов предполагает, что к данным прибавляется служебный заголовок), после чего в виде пакетов данные передаются по сети (причем порядок передачи пактов может нарушаться). Принимающая система «собирает» из пакетов исходный массив данных на основании заголовков пакетов. Это не очень понятно, но только до тех пор, пока не рассмотрим структуру пакетов.

Структура TCP-пакета:

Поясню только самые важные места:

Адрес получателя, порт получателя и адрес отправителя, порт отправителя — это надеюсь понятно.

Sequence Number(SYN) — номер очереди или последовательный номер, показывает порядковый номер пакета при передаче, именно поэтому принимающая система собирает пакеты именно так, как надо, а не в том порядке, как они пришли.

Acknowledgment Number(ACK) — номер подтверждения, показывает, на пакет с каким SYN отвечает удаленная система, таким образом мы имеем представление, что удаленная система получила наш пакет с данным
SYN.

Контрольные биты- 6 бит (на схеме между reversed и window). Значения битов:

URG: поле срочного указателя задействовано
ACK: поле подтверждения задействовано
PSH: функция проталкивания
RST: перезагрузка данного соединения
SYN: синхронизация номеров очереди
FIN: нет больше данных для передачи

DATA — это непосредственно те данные, которые мы хотим передать.

Думаю, для начала это все, что нужно, чтобы понять принцип работы протокола. Более подробно о значении остальных полей ты можешь прочитать в в RFC793. Ну а мы лучше разберем как же все-таки это работает на практике.

Когда мы хотим установить соединение, мы отправляем удаленной системе пакет следующей структуры:

Client — SYN (856779) — Host

Где Client- это мы, a Host — это удаленная система. Как ты видишь, мы посылаем пакет лишь с указанием SYN — это значит, что этот пакет первый, мы ни на что не отвечаем (отсутствует ACK). Данный пакет выглядит примерно так:

20 53 52 43 00 00 44 45 53 54 00 00 08 00 45 00 00 2C C3 00 40 00 20 06 10 0C CB 5E FD BA CB 5E F3 47 04 07 00 17 00 0D 12 CB 00 00 00 00 60 02 20 00 D9 70 00 00 02 04 05 B4 2D

Интересный момент в том, откуда берется SYN. SYN образуется от первоначального номера очереди
(ISN) — это 32-битный номер от 1 до 4294967295 (2 в 32-ой степени). ISN при перезагрузке системы равен 1, затем каждую секунду он увеличивается на 128000 (строго говоря изменение происходит каждые 4 микросекунды) + при каждом установленном соединении он увеличивается на 64000. Получается, что цикл уникальности ISN, при условии того, что никакие соединения не устанавливались, составляет примерно 4,55 часа. Поскольку ни один пакет так долго по сети не путешествует, мы можем полагать, что SYN будет абсолютно уникальным.

Получив наш пакет, удаленная система отвечает, что получила и готова установить соединение. Данные пакет выглядит так:

Host — SYN (758684758) и ACK (856780) — Client

Как видишь, удаленная система дает понять, что получила наш пакет. Для этого она посылает нам ACK с номером «наш SYN+1». В добавок к этому удаленная система посылает нам свой SYN (мы же тоже будем отвечать). А ответ наш будет такой:

Client — SYN (856780) и ACK (758684759) — Host

Думаю тебе уже должно быть все понятно. Если кто не понял, то пакет означает следующее: ваш пакет с SYN (758684758) получен, соединение установлено, наш SYN равен 856780.

Эту процедуру называют «трехкратным подтверждением» или «трехкратным рукопожатием». Первые два этапа необходимы для синхронизации SYN наших систем, а третий — подтверждение того, что синхронизация произошла.

Далее у нас идет обмен данными, т.е. то, для чего соединение и устанавливалось. Причем надо заметить, что на всех стадиях обеспечение сохранности данных, передаваемых с использованием протокола TCP, осуществляется следующим образом: посланный пакет помещается в буфер и если за определенное время от удаленной системы не приходит пакет с подтверждением (ACK), то пакет посылается снова; если же подтверждение пришло, то пакет считается посланным успешно и удаляется из буфера.

Ну соединение нам больше не нужно, можно его и закрыть. Этот этап снова будет
состоять из нескольких стадий — надеюсь ты уже в состоянии сам прочитать эти пакеты.

Client — FIN(4894376) и ACK (1896955378) — Host

Host — ACK (4894377) — Client

Host — FIN (1896955378) и ACK (4894377) — Client

Client — ACK (1896955378) — Host

Думаю, ничего сложного здесь нет. Единственное, что стоит отметить — это флаг FIN, который означает желание завершить соединение.

Подводя небольшие итоги вышеизложенному, отметим в каких же случаях изменяются/не изменяются порядковые номера:

Передача одного FIN Пакета = +1
Передача одного SYN Пакета = +1
Передача одного ACK Пакета = 0
Передача одного SYN/ACK Пакета = +1
Передача одного FIN/ACK Пакета = +1
Изменение за 1 секунду = +128,000
Установление одного соединения = +64,000

Возможно, кто-то спросит: «А что будет, если машин получит пакет с таким ACK, которого не было?» (SYN=ACK-1, а пакет с таким SYN мы не посылали). Получив ответ непонятно на что, мы в свою очередь ответим удаленной системе NACK-пакетом (означает «не знаю о чем ты», никакого соединения не устанавливается), но, надеюсь, более подробно мы поговорим с тобой об этом в следующий раз.

Протокол TCP

TCP или Transmission Control Protocol, используется как надежный протокол, обеспечивающий взаимодействие через взаимосвязанную сеть компьютеров. TCP проверяет, что данные доставляются по назначению и правильно.

TCP - это ориентированный на соединения протокол, предназначенный для обеспечения надежной передачи данных между процессами, выполняемыми или на одном и том же компьютере или на разных компьютерах. Термин "ориентированный на соединения" означает, что два процесса или приложения прежде чем обмениваться какими-либо данными должны установить TCP-соединение. В этом TCP отличается от протокола UDP, являющегося протоколом "без организации соединения", позволяющим выполнять широковещательную передачу данных неопределенному числу клиентов.

Когда приложение отправляет данные, используя TCP, они перемещаются вниз по стеку протоколов. Данные проходят по всем уровням и в конце концов передаются через сеть как поток битов. Каждый уровень в наборе протоколов TCP/IP добавляет к данным некоторую информацию в форме заголовков.

Когда пакет прибывает на конечный узел в сети, он снова проходит через все уровни снизу доверху. Каждый уровень проверяет данные, отделяя от пакета свою информацию в заголовке и наконец данные достигают серверного приложения в той же самой форме, в какой они покинули приложение-клиент:

Прежде чем рассматривать, как TCP устанавливает соединение с другим хостом TCP, приведем несколько терминов, которые необходимо определить:

Сегмент

Порция данных, которую TCP отправляет IP, называется сегментом TCP.

Дейтаграмма

Порция данных, которую IP отправляет уровню сетевого интерфейса, называется дейтаграммой IP.

Порядковый номер

Каждый сегмент TCP, отправленный через соединение, имеет назначенное ему число, которое называется "порядковым номером" (sequence number). Оно используется, чтобы гарантировать прибытие данных в правильном порядке.

Чтобы понять, как работает TCP, вкратце рассмотрим структуру заголовка TCP:

Порядковые номера и номера подтверждений используются TCP, чтобы гарантировать, что все данные прибывают в правильном порядке, а биты управления содержат разнообразные флаги, указывающие статус данных. Таких битов управления (обычно представляемых трехбуквенными сокращениями) всего шесть:

    URG - указывает, что сегмент содержит срочные данные.

    ACK - указывает, что сегмент содержит номер подтверждения.

    PSH - указывает, что данные нужно протолкнуть к получающему пользователю.

    RST - сбрасывает соединение.

    SYN - используется для синхронизации порядковых номеров.

    FIN - указывает конец данных.

Для установления соединения TCP использует процесс, называемый "трехфазным квитированием" (Three-Phase Handshake) . Как следует из названия, этот процесс включает три шага:

    Клиент инициирует взаимодействие с сервером, посылая сегмент с установленным битом SYN. Этот сегмент содержит начальный порядковый номер клиента.

    Сервер отвечает отправкой сегмента с установленными битами SYN и ACK. Этот сегмент содержит начальный порядковый номер сервера (не связанный с порядковым номером клиента) и номер подтверждения, на единицу больший порядкового номера клиента (т.е. равный следующему порядковому номеру, ожидаемому от клиента).

    Клиент должен подтвердить этот сегмент отправкой обратно сегмента с установленным битом ACK. Номер подтверждения будет на единицу больше порядкового номера сервера, а порядковый номер будет равен номеру подтверждения сервера (т. е. на единицу больше начального порядкового номера клиента).

Теперь, узнав в общих чертах, как TCP устанавливает соединения, рассмотрим немного подробнее несколько операций TCP, чтобы понять, как TCP передает данные.

TCP передает данные порциями, которые называются сегментами. Чтобы гарантировать правильное и в должном порядке получение сегментов, каждому из них назначается порядковый номер. Получатель отправляет подтверждение получения сегмента. Если подтверждение не получено до истечения интервала - тайм-аута, данные отправляются еще раз. Каждому октету (восьми битам) данных назначается порядковый номер. Порядковый номер сегмента равен порядковому номеру первого октета данных в сегменте и это число отправляется в заголовке TCP данного сегмента.

TCP использует порядковые номера, чтобы гарантировать, что дублирующие данные получающему приложению переданы не будут и данные будут доставлены в правильном порядке. Заголовок TCP содержит контрольную сумму, чтобы гарантировать корректность данных при доставке. Если получен сегмент с неверной контрольной суммой, он просто отбрасывается, и подтверждение не отправляется. Это означает, что, когда значение тайм-аута истечет, отправитель повторит передачу сегмента.

TCP управляет объемом направляемых ему данных, возвращая с каждым подтверждением "размер окна". "Окно" - это объем данных, который может принять получатель. Между прикладной программой и потоком данных в сети располагается буфер данных. "Размер окна" фактически представляет собой разность между размером буфера и объемом сохраненных в нем данных. Это число отправляется в заголовке, чтобы информировать удаленный хост о текущем размере окна. Такой прием называется "скользящим окном" ("Sliding Window") .