Тарифы Услуги Сим-карты

Кодирование информации. Практическое применение кодирования информации. Представление и кодирование информации

Всем доброго времени суток. На связи Алексей Гулынин. В прошлой статье мы разобрали создание таблиц в html . В данной статье я бы хотел рассказать о проблеме, с которой вы обязательно столкнетесь (если ещё не столкнулись) в своей практике. А проблема эта связана с кодировкой на сайте . Нередко бывает такая ситуация: ты сидишь, что-то придумываешь, в итоге твои мысли выражаются в написанный код. Открываешь своё творение в браузере, а там написана полная ерунда, или как обычно данную ерунду называют — "кракозябры" . Тут очевидно одно, что проблема с кодировкой на сайте . Скорее всего у вас по умолчанию стоит кодировка windows-1251 (кирилица) , а браузер пытается открыть ваш файл в кодировке utf-8 . Кратко о том, что такое кодировка. Кодировка — это некая таблица, которая каждому символу ставит в соответствие какой-то машинный код. Соответственно наши русские буквы в одной кодировке имеют один код, в других — другой код. Друзья, используйте везде кодировку utf-8 и будет вам счастье. По-другому utf-8 называется Юникод .

Давайте создадим тестовый документ в Notepad++ и запишем следующий код.

Проблемы с кодировкой

Тестируем проблемы с кодировкой

В меню Notepad++ проверьте, чтобы наверху стояло "Кодировки" — "Кодировать в ANSI". Мы сейчас с вами искусственно создадим проблему с кодировкой. Попробуйте сейчас открыть данный файл в браузере. Мы увидим иероглифы. Дело здесь в том, что мы создали наш файл в кодировке ANSI (кирилица), а браузеру сообщили, что наш файл в кодировке utf-8 () .

Причины, по которым возникают проблемы с кодировкой на сайте :

1) Неправильное значение атрибута charset у мета-тега.

2) В меню Notepad++ проверьте, чтобы кодировка файла была utf-8. Это нужно сделать "Кодировки" — "Кодировать в UTF-8 (без BOM)". В интернете можно найти определение, что такое "BOM", но оно малопонятное. Как я понял, в начале документа, ставится неразрывный пробел с нулевой шириной. Он нам не нужен, поэтому всегда ставьте "без BOM".

3) Бывает такое, что первые два пункта выполнены, но на страницах сайта всё равно появляется ерунда. Здесь проблема может быть в настройках сервера,т.е. хостинг напрямую передаёт заголовки для наших файлов и выставляет кодировку по умолчанию. Давайте попробуем отучить его это делать. В корневой директории сайта должен быть файл .htaccess . С помощью этого файла можно вносить корректировки в работу хостинга. Если данного файла у вас нет, то его нужно создать. Удобно это сделать в редакторе Notepad++. В данном файле необходимо написать следующий код:

AddDefaultCharset UTF-8

Данной инструкцией мы говорим серверу, что у нас кодировка по умолчанию "utf-8". Если это не помогло, то нужно написать в этом же файле следующий код:

Charsetdisable on AddDefaultCharset Off

Здесь мы пытаемся сказать серверу, что нам не нужна кодировка по умолчанию. Если после данных махинаций ничего не помогло, то необходимо писать хостеру и решать данную проблему с ним. Возможно он что-то подскажет.

Одной из самых частых проблем, с которой сталкивается начинающий Web-мастер (да и не только начинающие), это проблемы с кодировкой на сайте . Даже у меня постоянно появляется при создании сайтов "абракадабра ". Но, благо, я прекрасно знаю, как эту проблему решить, поэтому всё привожу в порядок в течение нескольких секунд. И в этой статье я постараюсь научить Вас также быстро решать проблемы, связанные с кодировкой на сайте .

Первое, что стоит отметить, это то, что все проблемы с появлением "абракадабры" связаны с несовпадением кодировки документа и кодировки, выставляемой браузером . Допустим, документ в windows-1251 , а браузер почему-то выставляет UTF-8 . А уже источником такого несовпадения могут быть следующие причины.

Первая причина

Неправильно прописан мета-тег content-type . Будьте внимательны, в нём всегда должна находиться та кодировка, в котором написан Ваш документ.

Вторая причина

Вроде бы, мета-тег прописан так, как Вы хотите, и браузер выставляет именно то, что Вы хотите, но почему-то всё равно с кодировкой проблемы. Здесь, почти наверняка, виновато то, что сам документ имеет отличную кодировку. Если Вы работаете в Notepad++ , то внизу справа есть название кодировки текущего документа (например, ANSI ). Если Вы ставите в мета-теге UTF-8 , а сам документ написан в ANSI , то сделайте преобразование в UTF-8 (через меню "Кодировки " и пункт "Преобразовать в UTF-8 без BOM ").

Третья причина

Четвёртая причина

И, наконец, последняя популярная причина - это проблема с кодировкой в базе данных . Во-первых, убедитесь, что все Ваши таблицы и поля написаны в одной кодировке, которая совпадает с кодировкой остального сайта. Если это не помогло, то сразу после подключения в скрипте выполните следующий запрос:

SET NAMES "utf8"

Вместо "utf8 " может стоять другая кодировка. После этого все данные из базы должны выходить в правильной кодировке.

В данной статье я, надеюсь, разобрал, как минимум, 90% проблем, связанных с появлением "абракадабры" на сайте . Теперь Вы должны расправляться с такой популярной и простой проблемой, как неправильная кодировка, в два счёта.

В течение последних двух лет в построении кодов, исправляющих ошибки, произошло несколько замечательных сдвигов. Были найдены методы построения эффективных, очень длинных кодов; и, что особенно важно, эти коды оказались пригодными для практического осуществления. В то же время возрастает потребность в каналах связи очень высокой надежности, которые можно было бы использовать в комплексах вычислительных машин и различного автоматического оборудования. По мере того как увеличивается необходимость в большей надежности, растет экономичность работы электронных логических устройств и глубже разрабатывается теория кодирования, приближается время, когда устройства, обнаруживающие и исправляющие ошибки, т. е. устройства типа, описываемого в этой книге, будут играть все более важную роль в создании сложных информационных систем.

В этой главе вводится понятие канала связи, описывается роль кодов при передаче информации, определяются блоковые коды и вводятся другие важнейшие понятия.

1.1. Канал связи

Принципиальная схема цифровой системы связи изображена на рис. 1.1 . Эта же самая модель описывает и систему хранения информации, если среду, в которой хранится информация, рассматривать как канал. Типичным каналом для передачи информации является телефонный канал. Типичным устройством для хранения информации является магнитофон, включая записывающую и считывающую головки.

Рис. 1.1. Блок-схема общей системы передачи или хранения информации.

Типичным источником информации является сообщение, состоящее из двоичных или десятичных цифр, или же текст, записанный с помощью некоторого алфавита. Кодирующее устройство преобразует эти сообщения в сигналы, которые могут быть переданы

по каналу. Типичными сигналами являются электрические с некоторыми ограничениями по мощности, по полосе частот и по продолжительности. Эти сигналы поступают в канал и искажаются шумом. Затем искаженный сигнал поступает в декодирующее устройство, которое восстанавливает посланное сообщение, и направляет его получателю. Задача инженера-связиста состоит в основном в том, чтобы построить кодирующее и декодирующее устройства, хотя она может включать в себя также задачу улучшения самого канала. Заметим, что в кодирующее устройство входит устройство, производящее операцию, обычно называемую модулированием, а в декодирующее устройство входит устройство, производящее детектирование.

Система, изображенная на рис. 1.1, является слишком общей для того, чтобы ею было удобно пользоваться при теоретическом анализе. Общая теория кодирования указывает, что канал связи обладает определенной пропускной способностью, что типичные источники обладают определенной скоростью создания информации и что в том случае, когда скорость создания информации источником меньше пропускной способности канала, можно осуществить кодирование и декодирование так, чтобы вероятность ошибочного декодирования была произвольно малой .

Рис. 1.2, Блок-схема типичной системы передачи или хранения информации.

Таким образом, хотя остается надежда на будущее, пока что теория дает не более чем смутные указания на то, как следует конструировать систему передачи информации.

Типичная современная система передачи информации изображена на рис. 1.2. Почти все вычислительные машины преобразуют поступающую информацию в двоичную и затем обрабатывают ее в двоичной форме. Во многих системах используется код, в котором различные

комбинации из шести двоичных знаков изображают числа, буквы, пробел и такие специальные символы, как знаки препинания. В другом распространенном коде используются четыре двоичных знака для каждой десятичной цифры и два десятичных знака для каждого алфавитного или специального символа .

Устройство для кодирования двоичных символов в сигналы на входе канала иногда называют модулятором. В большинстве случаев он сопоставляет единице импульс, а нулю - отсутствие импульса или импульс, отчетливо отличаемый от кода для единицы. Такое раздельное преобразование каждого двоичного символа является ограничением, которое определенно вызывает снижение пропускной способности канала. Декодирующее устройство определяет, является ли очередной принятый импульс нулем или единицей. Независимое декодирование отдельных импульсов приводит к дальнейшему снижению пропускной способности. Теория показывает, что более сложные методы кодирования и декодирования повышают скорость передачи при той же самой вероятности ошибки. Однако пока не известны эффективные способы осуществления этих методов .

В устройствах для кодирования и декодирования двоичных символов двоичными используются двоичные коды, обнаруживающие и исправляющие ошибки.

На сегодняшний день кодировка ASCII представляет собой стандартом представления первых 128-значений (включая цифры и знаки препинания) английского алфавита, представленных в определенном порядке.

Однако, даже 1 байт позволяет закодировать в 2 раза больше значений, то есть не 128, а целых 256 разных значений. Поэтому достаточно быстро на смену базовой ASCII стали появляться более расширенные варианты этой знаменитой и популярной по сей день кодировки, в которых кодировались также символы алфавитов и, соответственно, текста различных языков, в том числе и русского.

Расширения ASCII для России

На сегодняшний день для российских пользователей приоритетными являютсякодировка Windows1251 и кодировка юникод, а также UTF 8 , которые произошли от ASCII .

Собственно говоря, у кого-то может возникнуть весьма справедливый вопрос: «А зачем вообще нужны эти кодировки текстов?»
Стоит помнить, что компьютер - это всего-навсего машина, которая должна действовать четко по инструкциям. Чтобы было понятно, что нужно делать с каждым символом написанного, его представляют в виде набора векторных форм, каждый набор которых отправляет в нужное место, чтобы на экране появлялось то или иное обозначение.

За формирование векторных форм отвечают шрифты, а сам процесс кодирования зависит от операционной системы, а также используемых в ней программ. Таким образом, каждый текст по своей сути - это некоторый набор байтов, в каждом из них представлена кодировка одного написанногосимвола. А программа, занимающаяся отображением напечатанной информации на экране (это может быть браузер или текстовый процессор), разбирает код, находит подходящее отображение по его коду в таблице кодировок, преобразует в необходимую векторную форму и отображает в текстовом файле.

Кодировка CP866 и KOI8-R широко применялись до появления графической операционной системы, завоевавшей популярность во всем мире, - Windows . Теперь самой популярной кодировкой, поддерживающей русский, стала Windows1251 .

Однако, она не единственная, поэтому у производителей шрифтов для русского, используемых в программном обеспечении, периодически даже до сих пор появляются затруднения, связанные с неверным отображением символов и появлением так называемой кракозябры. Эти несуразные иероглифы являются результатом некорректного использования таблиц кодировок, то есть при кодировании и декодировании использовались разные таблицы.

Такая же ситуация имеет место и на сайтах, блогах и прочих ресурсах, где есть информация на русском и прочих иностранных символах, отличных от английских. Данная ситуация определила основную предпосылкой создания универсальной кодировки, позволяющей кодировать текст на любом языке, даже китайском, где символов значительно больше, чем 256.

Универсальные кодировки

Первой версией универсальной кодировки, разработанной в рамках консорциума Юникод, была кодировка UTF 32 . Для кодирования каждого символа использовалось 32 бита. Теперь была реализована возможность кодирования огромного количества знаков, но появилась другая проблема -большинству европейских стран такое число лишних символов было совершенно не нужно. Ведь документы получались очень тяжелыми. Поэтому на смену UTF 32 пришла UTF 16 , ставшая базовой для всех символов, используемых в нашей стране и не только.

Но все равно оставалось достаточно много недовольных. Например, те, кто общался только на английском языке, так как при переходе с ASCII на UTF 16 их документы все равно увеличивались в размерах, причем существенно, практически в 2 раза.
В результате появилась кодировка переменной длинны UTF 8 , что позволило не увеличивать вес текста.

Кракозябры и методы борьбы с ними

Вообще, кодировка задается на странице, где создается само информационное сообщение. В результате, в начале документа формируется своеобразная метка, в которой запоминается, в прямом или обратном порядке записаны коды символов UTF16 .

Если что-то было напечатано в UTF-8 , то никакого маркера в начале нет, так как сама возможность записи кода символа в обратном порядке в этой кодировке отсутствует.

Поэтому, следует сохранять все, что набрано в редакторе, без маркеров (BOM ), чтобы снизить вероятность появления кракозябров в документе.

Еще одним полезным советом по борьбе с кракозябрами - прописать в шапке кода каждой страницы сайта информацию о правильной кодировке текста, чтобы ни на локальном хосте, ни на сервере не было путаницы.

Например, так

Актуальность. Внедрение информационных технологий отразилось на технологии документооборота внутри организаций и между ними, и между отдельными пользователями. Большое значение в данной сфере приобретает электронный документооборот, позволяющий отказаться от бумажных носителей (снизить их долю в общем потоке) и осуществлять обмен документами между субъектами в электронном виде. Преимущества данного подхода очевидны: снижение затрат на обработку и хранение документов и их быстрый поиск. Однако отказ от бумажного документооборота поставил ряд проблем, связанных с обеспечением целостности передаваемого документа и аутентификации подлинности его автора.

Цель работы. Дать основные понятия по теме «Кодирование текстовой информации», отразить возможности злоумышленника при реализации угроз, направленных на нарушение целостности передаваемых сообщений, предложить пути решения проблемы.

Что такое код? Код – это система условных знаков для представления информации.

Кодирование – это представление информации в удобном альтернативном виде с помощью некоторого кода для передачи, обработки или хранения, а декодирование – это процесс восстановления первоначальной формы представления информации.

Персональный компьютер обрабатывает числовую, текстовую, графическую, звуковую и видео – информацию. В компьютере она представлена в двоичном коде, так если используется алфавит в два символа – 0 и 1. В двоичном коде ее легче всего представить как электрический импульс, его отсутствие (0) и присутствие (1). Подобный вид кодирования называется двоичным.

Элементы кодируемой информации :

Буквы, слова и фразы естественного языка;

Знаки препинания, арифметические и логические операции, и т.д;

Наследственная информация и т.д.

Сами знаки операций и операторы сравнения – это кодовые обозначения , представляющие собой буквы и сочетания букв, числа, графические обозначения, электромагнитные импульсы, световые и звуковые сигналы и т.д.

Способы кодирования: числовой (с помощью чисел), символьный (с помощью символов алфавита исходного текста) и графический (с помощью рисунков, значков)

Цели кодирования:

А) Удобство хранения, обработки, передачи информации и обмена ей между субъектами;

Б) Наглядность отображения;

В) Идентификация объектов и субъектов;

Г) Сокрытие секретной информации.

Различают одноуровневое и многоуровневое кодирование информации. Одноуровневое кодирование–это световые сигналы светофора. Многоуровневое- представление визуального (графического) образа в виде файла фотографии. Bначале визуальная картинка разбивается на пиксели, каждая отдельная часть картинки кодируется элементарным элементом, а элемент, в свою очередь, кодируется в виде набора цветов (RGB: англ.red – красный, green – зеленый, blue – синий) соответствующей интенсивностью, которая представляется в виде числового значения (наборы этих чисел кодируются в форматах jpeg, png и т.д.). Наконец, итоговые числа кодируются в виде электромагнитных сигналов для передачи по каналам связи или областей. Сами числа при программной обработке представляются в соответствии с принятой системой кодирования чисел.

Различают обратимое и необратимое кодирование. При обратимом можно однозначно восстановить сообщение без потери качества, например, кодирование с помощью азбуки Морзе. При необратимом однозначное восстановление исходного образа невозможно. Например, кодирование аудиовизуальной информации (форматы jpg, mp3 или avi) или хеширование.

Существуют общедоступные и секретные системы кодирования. Первые используются для облегчения обмена информацией, вторые – в целях ее сокрытия от посторонних лиц.

Кодирование текстовой информации . Пользователь обрабатывает текст, состоящий из букв, цифр, знаков препинания и других элементов.

Для кодирования одного символа необходим 1 байт памяти или 8 бит. Cпомощью простой формулы, связывающей количество возможных событий (К) и количество информации (I), вычисляем, сколько не одинаковых символов можно закодировать: К = 2^I = 28 = 256 . Для кодирования текстовой информации используют алфавит мощностью в 256 символов.

Принцип данного кодирования заключается в том, что каждому символу (букве, знаку) соответствует свой двоичный код от 00000000 до 11111111.

Для кодирования букв российского алфавита есть пять разных кодировочных таблиц (КОИ – 8, СР1251, СР866, Мас, ISO). Тексты, закодированные одной таблицей, не будут корректно отображаться в другой кодировке:

Для одного двоичного кода в разных таблицах соответствуют разные символы:

Таблица 1 – Соответствие разных символов двоичному коду

Двоичный код Десятичный код КОИ8 СР1251 СР866 Мас ISO
11000010 194 Б В - - Т

Перекодированием текстовых документов занимаются программы, встроенные в текстовые редакторы и процессоры. С начала 1997 года Microsoft Office поддерживает новую кодировку Unicode, в ней можно закодировать не 256, а 655369 символов (под каждый символ начали отводить 2 байта).

Биты и байты. Цифра, воспринимаемая машиной, таит в себе некоторое количество информации. Оно равно одному биту. Это касается каждой единицы и каждого нуля, которые составляют ту или иную последовательность зашифрованной информации. Соответственно, количество информации в любом случае можно определить, просто зная количество символов в последовательности двоичного кода. Они будут численно равны между собой. 2 цифры в коде несут в себе информацию объемом в 2 бита, 10 цифр – 10 бит и так далее. Принцип определения информационного объема:

Рисунок 1 – определение информационного объема

Проблема целостности информации. Проблема целостности информации с момента ее появления до современности прошла довольно долгий путь. Изначально существовало два способа решения задачи: использование криптографических методов защиты информации и хранения данных и программно-техническое разграничение доступа к данным и ресурсам вычислительных систем. Стоит учесть, что в начале 80–х годов компьютерные системы были слабо распространены, технологии глобальных и локальных вычислительных сетей находились на начальной стадии своего развития, и указанные задачи удавалось достаточно успешно решать.

Современные методы обработки, передачи и накопления информационной безопасности способствовали появлению угроз, связанных с возможностью потери, искажения и раскрытия данных, адресованных или принадлежащих другим пользователям. Поэтому обеспечение целостности информации является одним из ведущих направлений развития ИТ .

Под информационной безопасностью понимают защищенность информации от незаконного ее потребления: ознакомления, преобразования и уничтожения.

Различают естественные (не зависящие от деятельности человека) и искусственные (вызванные человеческой деятельностью) угрозы информационной безопасности. В зависимости от их мотивов искусственные подразделяют на непреднамеренные (случайные) и преднамеренные (умышленные).

Гарантия того, что сообщение не было изменено в процессе его передачи, необходима и для отправителя, и для получателя электронного сообщения. Получатель должен иметь возможность распознать факт искажений, внесенных в документ.

Проблема аутентификации подлинности автора сообщения заключается в обеспечении гарантии того, что никакой субъект не сможет подписаться ни чьим другим именем, кроме своего. В обычном бумажном документообороте информация в документе и рукописная подпись автора жестко связана с физическим носителем (бумагой). Для электронного же документооборота жесткая связь информации с физическим носителем отсутствует.

Рассмотрим методы взлома компьютерных систем, все попытки подразделяют на 3 группы:
1. Атаки на уровне операционной системы: кража пароля, сканирование жестких дисков компьютера, сборка “мусора” (получение доступа к удаленным объектам в “мусорной” корзине), запуск программы от имени пользователя, модификация кода или данных подсистем и т.д.
2. Атака на уровне систем управления базами данных: 2 сценария, в первом случае результаты арифметических операций над числовыми полями СУБД округляются в меньшую сторону, а разница суммируется в другой записи СУБД, во втором случае хакер получает доступ к статистическим данным
3. Атаки на уровне сетевого программного обеспечения. Сетевое программное обеспечение (СПО) наиболее уязвимо: перехват сообщений на маршрутизаторе, создание ложного маршрутизатора, навязывание сообщений, отказ в обслуживании

Перечислим возможности злоумышленника при реализации угроз, направленных на нарушение целостности передаваемых сообщений и подлинности их авторства:

А) Активный перехват. Нарушитель перехватывает передаваемые сообщения, изменяя их.

Б) Маскарад. Нарушитель посылает документ абоненту B, подписываясь именем абонента A.

В) Ренегатство. Абонент А заявляет, что не посылал сообщения абоненту B, хотя на самом деле посылал. В этом случае абонент А – злоумышленник.

Г) Подмена. Абонент B изменяет/формирует новый документ, заявляя, что получил его от абонента A. Недобросовестный пользователь – получатель сообщения B.

Для анализа целостности информации используется подход, основанный на вычислении контрольной суммы переданного сообщения и функции хэширования (алгоритма, позволяющего сообщение любой длины представить в виде короткого значения фиксированной длины).

H а всех этапах жизненного цикла существует угроза ЦИ (целостности информации):

При обработке информации нарушение ЦИ возникает вследствие технических неисправностей, алгоритмических и программных ошибок, ошибок и деструктивных действий обслуживающего персонала, внешнего вмешательства, действия разрушающих и вредоносных программ (вирусов, червей).

В процессе передачи информации – различного рода помехи как естественного, так и искусственного происхождения. Возможно искажение, уничтожение и перехват информации.

В процессе хранения основная угроза – несанкционированный доступ с целью модификации информации, вредоносные программы (вирусы, черви, логические бомбы) и технические неисправности.

В процессе старения – утеря технологий, способных воспроизвести информацию, и физическое старение носителей информации.

Угрозы ЦИ возникают на протяжении всего жизненного цикла информации с момента ее появления до начала утилизации.

Мероприятия по предотвращению утечки информации по техническим каналам включают в себя обследования помещений на предмет обнаружения подслушивающих устройств, а также оценку защищенности помещений от возможной утечки информации с использованием дистанционных методов перехвата и исследование ТС, где ведутся конфиденциальные разговоры.

Обеспечение целостности информации. Для обеспечения ЦИ необходимым условием является наличие высоконадежных технических средств (ТС), включающие в себя аппаратную и/или программную составляющие, и различные программные методы, значительно расширяющие возможности по обеспечению безопасности хранящейся информации . ТС обеспечивает высокую отказоустойчивость и защиту информации от возможных угроз. K ним относят средства защиты от электромагнитного импульса (ЭМИ). Наиболее эффективный метод уменьшения интенсивности ЭМИ – это экранирование – размещение оборудования в электропроводящем корпусе, который препятствует проникновению электромагнитного поля.

К организационным методам относят разграничение доступа , организующий доступ к информации к используемому оборудованию и предполагающий достаточно большой перечень мероприятий, начиная от подбора сотрудников и заканчивая работой с техникой и документами. Среди них выделяют технологии защиты,обработки и хранения документов, аттестацию помещений и рабочих зон, порядок защиты информации от случайных/несанкционированных действий. Особое внимания уделяют защите операционных систем (ОС), обеспечивающих функционирование практически всех составляющих системы. Наиболее действенный механизм разграничения доступа для ОС – изолированная программная среда (ИПС). Устойчивость ИКС к различным разрушающим и вредоносным программам повышает ИПС, обеспечивая целостность информации.

Антивирусная защита . В настоящее время под компьютерным вирусом принято понимать программный код, обладающий способностью создавать собственные копии и имеющие механизмы, внедряющие эти копии в исполняемые объекты вычислительной системы . Вредоносные программы (вирусы) имеют множество видов и типов, отличаясь между собой лишь способами воздействия на различные файлы, размещением в памяти ЭВМ или программах, объектами воздействия. Главное свойство вирусов, выделяющее их среди множества программ и делающее наиболее опасным, это способность к размножению.

ЦИ обеспечивает использование антивирусных программ, однако ни одна из них не гарантирует обнаружение неизвестного вируса. Применяемые эвристические сканеры не всегда дают правильный диагноз. Пример подобных ошибок – две антивирусные программы, запущенные на одном компьютере: файлы одного антивируса принимаются за вредоносную программу другим антивирусом.

Использование локальных сетей, не имеющих связи с интернетом – лучший способ защиты от вирусов. При этом необходимо жестко контролировать различные носители информации с прикладными программами, с помощью которых можно занести вирус .

Помехоустойчивое кодирование . Наиболее уязвимой информация бывает в процессе ее передачи. Разграничение доступа снимает многие угрозы, но она невозможна при использовании в канале

связи беспроводных линий. Информация наиболее уязвима именно на таких участках ИКС. Обеспечение ЦИ достигается засчет уменьшения объема передаваемой информации. Это уменьшение можно достичь за счет оптимального кодирования источника.

Метод динамического сжатия . При таком подходе структура сжатого сообщения включает в себя словарь и сжатую информацию. Однако, если в словаре при передаче или хранении есть ошибка, то возникает эффект размножения ошибок, приводящий к информационному искажению/уничтожению.

Стеганография. С этим термином знаком тот,кто занимается криптографией. Выделяют три направления стеганографии: сокрытие данных, цифровые водяные знаки и заголовки. При скрытой передаче информации одновременно с обеспечением конфиденциальности решается и вопрос обеспечения ЦИ. Нельзя изменить того, чего не видишь – главный аргумент использования стеганографии. Ее главный недостаток – больший объем контейнера. Но это можно нивелировать, передавая в качестве контейнера полезную информацию, не критичную к ЦИ.

Резервирование используется при передаче и хранении информации. При передаче возможен многократный повтор сообщения в одно направление либо его рассылка во все возможные направления. Данный подход можно рассматривать как один из методов ПКИ. При хранении идея резервирования достаточно проста – создание копий полученных файлов и их хранение отдельно от первоначальных документов. Зачастую такие хранилища создаются в географически разнесенных местах.

Недостаток резервирования – возможность ее несанкционированного снятия, т.к. информация, располагаемая на внешних устройствах хранения, является незащищенной.

Заключение . Любая информация, выводящаяся на монитор компьютера, прежде чем там появиться, подвергается кодированию, которое заключается в переводе информации на машинный язык. Он представляет собой последовательность электрических импульсов – нулей и единиц. Для кодирования различных символов существуют отдельные таблицы.

  • Андрианов, В.И. «Шпионские штучки» и устройства для защиты объектов и информации: справ. пособие / В.И. Андрианов, В.А. Бородин, А.В. Соколов. С- Пб.: Лань, 1996. – 272с.
  • Баранов, А.П. Проблемы обеспечения информационной безопасности в информационно-телекоммуникационной систем специального назначения и пути их решения // Информационное общество. - 1997. вып.1. - с. 13-17.
  • Количество просмотров публикации: Please wait