Тарифы Услуги Сим-карты

Форматы - Подробно о декодере jpeg. При установке максимального качества изображение сохраняется без каких-либо потерь качества. DCT vs все остальное

Легко подсчитать, что несжатое полноцветное изображение, размером 2000*1000 пикселов будет иметь размер около 6 мегабайт. Если говорить об изображениях, получаемых с профессиональных камер или сканеров высокого разрешения, то их размер может быть ещё больше. Не смотря на быстрый рост ёмкости устройств хранения, по-прежнему весьма актуальными остаются различные алгоритмы сжатия изображений.
Все существующие алгоритмы можно разделить на два больших класса:

  • Алгоритмы сжатия без потерь;
  • Алгоритмы сжатия с потерями.
Когда мы говорим о сжатии без потерь, мы имеем в виду, что существует алгоритм, обратный алгоритму сжатия, позволяющий точно восстановить исходное изображение. Для алгоритмов сжатия с потерями обратного алгоритма не существует. Существует алгоритм, восстанавливающий изображение не обязательно точно совпадающее с исходным. Алгоритмы сжатия и восстановления подбираются так, чтобы добиться высокой степени сжатия и при этом сохранить визуальное качество изображения.

Алгоритмы сжатия без потерь

Алгоритм RLE
Все алгоритмы серии RLE основаны на очень простой идее: повторяющиеся группы элементов заменяются на пару (количество повторов, повторяющийся элемент). Рассмотрим этот алгоритм на примере последовательности бит. В этой последовательности будут чередовать группы нулей и единиц. Причём в группах зачастую будет более одного элемента. Тогда последовательности 11111 000000 11111111 00 будет соответствовать следующий набор чисел 5 6 8 2. Эти числа обозначают количество повторений (отсчёт начинается с единиц), но эти числа тоже необходимо кодировать. Будем считать, что число повторений лежит в пределах от 0 до 7 (т.е. нам хватит 3 бит для кодирования числа повторов). Тогда рассмотренная выше последовательность кодируется следующей последовательностью чисел 5 6 7 0 1 2. Легко подсчитать, что для кодирования исходной последовательности требуется 21 бит, а в сжатом по методу RLE виде эта последовательность занимает 18 бит.
Хоть этот алгоритм и очень прост, но эффективность его сравнительно низка. Более того, в некоторых случаях применение этого алгоритма приводит не к уменьшению, а к увеличению длины последовательности. Для примера рассмотрим следующую последовательность 111 0000 11111111 00. Соответствующая ей RL-последовательность выглядит так: 3 4 7 0 1 2. Длина исходной последовательности – 17 бит, длина сжатой последовательности – 18 бит.
Этот алгоритм наиболее эффективен для чёрно-белых изображений. Также он часто используется, как один из промежуточных этапов сжатия более сложных алгоритмов.

Словарные алгоритмы

Идея, лежащая в основе словарных алгоритмов, заключается в том, что происходит кодирование цепочек элементов исходной последовательности. При этом кодировании используется специальный словарь, который получается на основе исходной последовательности.
Существует целое семейство словарных алгоритмов, но мы рассмотрим наиболее распространённый алгоритм LZW, названный в честь его разработчиков Лепеля, Зива и Уэлча.
Словарь в этом алгоритме представляет собой таблицу, которая заполняется цепочками кодирования по мере работы алгоритма. При декодировании сжатого кода словарь восстанавливается автоматически, поэтому нет необходимости передавать словарь вместе с сжатым кодом.
Словарь инициализируется всеми одноэлементными цепочками, т.е. первые строки словаря представляют собой алфавит, в котором мы производим кодирование. При сжатии происходит поиск наиболее длинной цепочки уже записанной в словарь. Каждый раз, когда встречается цепочка, ещё не записанная в словарь, она добавляется туда, при этом выводится сжатый код, соответствующий уже записанной в словаре цепочки. В теории на размер словаря не накладывается никаких ограничений, но на практике есть смысл этот размер ограничивать, так как со временем начинаются встречаться цепочки, которые больше в тексте не встречаются. Кроме того, при увеличении размеры таблицы вдвое мы должны выделять лишний бит для хранения сжатых кодов. Для того чтобы не допускать таких ситуаций, вводится специальный код, символизирующий инициализацию таблицы всеми одноэлементными цепочками.
Рассмотрим пример сжатия алгоритмом. Будем сжимать строку кукушкакукушонкукупилакапюшон. Предположим, что словарь будет вмещать 32 позиции, а значит, каждый его код будет занимать 5 бит. Изначально словарь заполнен следующим образом:

Эта таблица есть, как и на стороне того, кто сжимает информацию, так и на стороне того, кто распаковывает. Сейчас мы рассмотрим процесс сжатия.

В таблице представлен процесс заполнения словаря. Легко подсчитать, что полученный сжатый код занимает 105 бит, а исходный текст (при условии, что на кодирование одного символа мы тратим 4 бита) занимает 116 бит.
По сути, процесс декодирования сводится к прямой расшифровке кодов, при этом важно, чтобы таблица была инициализирована также, как и при кодировании. Теперь рассмотрим алгоритм декодирования.


Строку, добавленную в словарь на i-ом шаге мы можем полностью определить только на i+1. Очевидно, что i-ая строка должна заканчиваться на первый символ i+1 строки. Т.о. мы только что разобрались, как можно восстанавливать словарь. Некоторый интерес представляет ситуация, когда кодируется последовательность вида cScSc, где c - это один символ, а S - строка, причём слово cS уже есть в словаре. На первый взгляд может показаться, что декодер не сможет разрешить такую ситуацию, но на самом деле все строки такого типа всегда должны заканчиваться на тот же символ, на который они начинаются.

Алгоритмы статистического кодирования
Алгоритмы этой серии ставят наиболее частым элементам последовательностей наиболее короткий сжатый код. Т.е. последовательности одинаковой длины кодируются сжатыми кодами различной длины. Причём, чем чаще встречается последовательность, тем короче, соответствующий ей сжатый код.
Алгоритм Хаффмана
Алгоритм Хаффмана позволяет строить префиксные коды. Можно рассматривать префиксные коды как пути на двоичном дереве: прохождение от узла к его левому сыну соответствует 0 в коде, а к правому сыну – 1. Если мы пометим листья дерева кодируемыми символами, то получим представление префиксного кода в виде двоичного дерева.
Опишем алгоритм построения дерева Хаффмана и получения кодов Хаффмана.
  1. Символы входного алфавита образуют список свободных узлов. Каждый лист имеет вес, который равен частоте появления символа
  2. Выбираются два свободных узла дерева с наименьшими весами
  3. Создается их родитель с весом, равным их суммарному весу
  4. Родитель добавляется в список свободных узлов, а двое его детей удаляются из этого списка
  5. Одной дуге, выходящей из родителя, ставится в соответствие бит 1, другой - бит 0
  6. Шаги, начиная со второго, повторяются до тех пор, пока в списке свободных узлов не останется только один свободный узел. Он и будет считаться корнем дерева.
С помощью этого алгоритма мы можем получить коды Хаффмана для заданного алфавита с учётом частоты появления символов.
Арифметическое кодирование
Алгоритмы арифметического кодирования кодируют цепочки элементов в дробь. При этом учитывается распределение частот элементов. На данный момент алгоритмы арифметического кодирования защищены патентами, поэтому мы рассмотрим только основную идею.
Пусть наш алфавит состоит из N символов a1,…,aN, а частоты их появления p1,…,pN соответственно. Разобьем полуинтервал представлена реализация распараллеливания всех стадий алгоритма JPEG по технологии CUDA, что значительно ускорило производительность сжатия и декодирования по стандарту JPEG.

В 2010 году ученые из проекта PLANETS поместили инструкции по чтению формата JPEG в специальную капсулу, которую поместили в специальный бункер в швейцарских Альпах. Сделано это было с целью сохранения для потомков информации о популярных в начале XXI века цифровых форматах.

См. также

Примечания

Ссылки

  • Спецификация JFIF 1.02 (текстовый файл)
  • Оптимизация JPEG. Часть 1 , Часть 2 , Часть 3 .

Форматы - Подробно о декодере jpeg.

Всем привет! Помните меня? :) Поскольку тема данной статьи интересует многих, я, не долго думая, решил нацарапать статейку. Несмотря на всю кажущуюся сложность, постараюсь изложить всё в простой, понятной форме. Хочу сразу предупредить: всё, о чем я буду писать, есть результат моих собственных экспериментов, а посему не является истиной в последней инстанции. Это всего лишь мои мысли. Таким образом, если что не так, я не виноват:). В статье буду использовать фрагменты из документации по жпегу by Ceryx, а также оптимизированные и страшно изуродованные:)) куски кода из пасовского исходника жпег декодера by Алексей Абрамов. Там, правда, мало что от него осталось, но в любом случае его я использовал в качестве базы. Данный материал не рассчитан на но─ вичков - как минимум, требуются знания языка Паскаль. Вступление сказано, теперь переходим непосредственно к делу. Декодирование жпега можно разделить на две стадии. настройка декодера на соответствующий жпег, всё это я опишу в первую очередь. 2-я - Непосредственно сам процесс декодирования, это найдёте дальше по тексту. Для лучшего понимания алгоритмов, кое-где буду приводить куски пасовского исходника. Немного теории. JPEG представляет собой упакованный кадр фотореалистичного изображения, то есть расчитан он в основном на сжатие цветных фотографий с глубиной цвета 24 бита (до цветовых преобразований подразумевается по 8 бит на каждую цветовую ком─ поненту RGB). Чтобы было понятно, как декодировать жпег, вкратце опишу процесс сжатия кадра. Кадр разбивается на блоки 8x8. Над каждым блоком производится ДКП (Дискретное Косинусное Преобразование), тем самым происходит трансформация яркостных данных из временной области в частотную. Затем полученная частотная матрица квантизируется, при этом про─ исходит оптимизация частот. Собственно, на данном этапе и проис─ ходит сжатие, за счёт отбрасывания излишней высокочастотной информации. Далее все члены матрицы вытягиваются в одну цепочку зигзагом и кодируются по RLC (Zero Run Length Coding). Финальный этап - кодирование по Хаффману, в результате которого из полного блока 8x8 остаётся лишь упакованная горстка битов. Процесс деко─ дирования выполняется в обратном кодированию порядке. Конечно, я описал лишь общую схему процесса сжатия, но думаю, пока этого вполне достаточно. Нам понадобится ещё несколько понятий. Цвета в жпеге хранятся не как RGB, а в формате YCbCr: Y - компонента яркости; Сb/Cr - цветоразностные компоненты, приблизительно показывают, сколько голубой и красной составляющей в цвете. Таким образом, если нас не интересуют цвета, можно извлечь только Y компоненту. Также по тексту будут фигурировать обозначения DC/AC. В полученном нами векторе из 64 элементов, необходимых для последующего преобразо─ вания по ДКП, первый элемент со смещением 0 называется DC - это, так сказать, нулевая частота,то есть фоновая яркость; все после─ дующие 63 элемента - AC. Это необходимо потому, что разные коэф─ фициенты кодируются по разному. 0-я частота, как правило, меняе─ тся слабо, поэтому кодируется не сам коэффициент, а разность ме─ жду этим и предыдущим DC коэффициентом. AC приходится кодировать как есть, там уже частоты меняются существенно, на протяжении всего кадра. Жпег представляет собой файл, поделенный на части - сегменты. Вот что из себя представляет сегмент: - заголовок (4 байта): $ff идентификатор сегмента n тип сегмента (1 байт) sh, sl размер сегмента, включая эти 2 байта, но не включая $FF и тип сегмента. Не в Intel"овском, а в Motorol"овском порядке: старший байт первый, младший последний! - содержимое сегмента, макс. 65533 байта. В начале сегмента стоит маркер - определённая метка: первый байт всегда FF, следующий - тип сегмента. Формат JPEG использует мотороловской формат для слов, то есть старший байт слова идёт первым, младший вторым. Приведу основные маркеры, которые нам понадобятся: D8 - SOI Start Of Image C0 - SOF0 Start Of frame (baseline) C2 - SOF2 Start Of frame (progressive) C4 - DHT Define Huffman table DB - DQT Define Quantization table DD - DRI Define Restart Interval DA - SOS Start Of Scan D9 - EOI End Of Image Немного подробнее опишу маркеры: D8,D9 = начало, конец файла; C0,C2 = определить основные параметры кадра (разрешение, цве─ тность, таблицы); C4 = таблицы Хаффмана (необходимы для декодирования битового потока); DB = таблицы квантизации (нужны для процесса деквантизации); DD = определить интервал перезапуска (редко используется в декодере); DA = начало сканирования (с этого маркера начинаются непосре─ дственно упакованные данные самого жпега). Дабы не захламлять ваши головы, уважаемые читатели, не буду сейчас углубляться в алгоритмы паковки жпега, сделаю это позже. Скажу лишь, что всё, что нам необходимо вначале сделать, - это просканировать файл от начала, от маркера SOI до маркера SOS, попутно инициализируя соответствующие переменные и таблицы. Мар─ кер SOS определяет начало пакованных данных жпега, а всё, что идёт после него, относится уже к процессу декодирования, это рассмотрим дальше. Процесс сканирования жпега начинается с чтения маркера SOI. Если в начале файла его нет, то это не жпег и можно смело пре─ кращать чтение.Сразу за маркером следуют 2 байта длины сегмента, исключение составляют SOI и EOI, у них сегмент отсутствует. Вот как выглядит основной цикл сканирования: ... Repeat BlockRead(PictureFile,v,2); if Lo(v)$FF then begin WriteLn("Invalid file format"); Close(PictureFile); Halt end; b:=Hi(v); Marker[b]:=True; if (b$D8) and (b$D9) then begin BlockRead(PictureFile,v,2); FilePtr:=Swap(v)-2; Case b of $C0,$C2: ... { Main Image Parameters } $C4: ... $DA: ... { Start Of Scan } $DB: ... $DD: ... { Define Restart Interval } End; while FilePtr0 do begin BlockRead(PictureFile,v,1); dec(FilePtr) end; if IOResult0 then begin WriteLn("I/O error !"); Close(PictureFile); Halt end end Until (b=$D9) or (b=$DA); ... BlockRead - читает из файла заданное количество байт Lo/Hi - выделяет младший/старший байт Swap - меняет старший и младший байт местами Все остальные маркеры и их сегменты, соответственно, пропус─ каются. Сканирование маркеров выполняется до тех пор, пока не встретится SOS. Это говорит о том, что все подготовительные опе─ рации выполнены и далее следует битовый поток данных самого жпега. Теперь рассмотрим подробнее обработку самих маркеров. Из─ лагать буду в такой последовательности: вначале полный формат соответствующего сегмента,далее фрагмент кода,затем комментарий. Пока описание буду давать краткое, более детально всё рассмотрим далее. Поэтому, если вдруг вам что-то будет неясно, советую пока пропустить это место и читать дальше. SOF0,SOF2: Начало кадра: ~~~~~~~~~~~~~~~~~~~~~~~~ - $ff, $c0 (SOF0) - длина (старший, младший байт), 8+кол.компонент*3 - точность данных (1 байт) в формате бит/элемент, обычно 8 - высота жпега (2 байта, Ст-Мл) - ширина жпега (2 байта, Ст-Мл) - кол.компонент (1 байт): обычно 1=чёрно-белое;3=цветное YCbCr - для каждого компонента: 3 байта - идентификатор компонента (1=Y, 2=Cb, 3=Cr) - сэмплинг фактор (бит 0-3 верт., 4-7 гор.) - номер таблицы квантизации ... $C0,$C2: begin vv:=ReadByte; { Main Image Parameters } Height:=ReadWord; Width:=ReadWord; planes:=ReadByte; if (vv8) or ((planes1) and (planes3)) then begin WriteLn("Only 8-bit Grayscale/RGB images supported"); Close(PictureFile); Halt end; For hh:=0 to planes-1 do begin CmpID.C:=ReadByte; vv:=ReadByte; CmpID.H:=Hi4(vv); CmpID.V:=Lo4(vv); CmpID.T:=ReadByte end; method:=b end; ... ReadByte/ReadWord - чтение байта/слова из файла Lo4/Hi4 - выделяет младшую/старшую часть байта Вначале следуют: разрядность данных (обычно 8 бит, остальные значения можно не обрабатывать); высота, ширина картинки в пик─ селах; количество компонент (определяет тип изображения: 1=чёр─ но-белое, 3=цветное). Далее для каждой компоненты следуют 3 бай─ та: тип компоненты (1=Y,2=Cb,3=Cr); сэмплинг фактор; номер таб─ лицы квантизации. Все эти параметры необходимо сохранить в соот─ ветствующих переменных и массивах, они нам понадобятся позже. DHT: Определить таблицу Хаффмана (ТХ): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - $ff, $c4 (DHT) - информационный байт ТХ: бит 0..3: номер ТХ (0..3, иначе ошибка) бит 4: тип ТХ, 0=DC таблица, 1=AC таблица бит 5..7: не используется=0 - 16 байтов: количество символов с кодами длиной 1..16, сумма этих байтов есть общее количество кодов, должно быть - n байтов: таблица, содержащая символы в порядке увеличения длины кода (n = общее число кодов) Комментарий: - один DHT сегмент может содержать несколько таблиц, ... $C4:begin Repeat { Read & compile Huffman Tables } hh:=ReadByte; For vv:=0 to 15 do HT.L:=ReadByte; aa:=0; For vv:=0 to 15 do HT.V:=ReadByte;inc(aa); end; c:=0;aa:=0; For vv:=0 to 15 do begin if HT.L>0 then begin HT.H2.SV:=aa-c; HT.H2.EV:=aa+HT.L; end; For m:=1 to HT.L do begin HT.H1.V:=HT.V; if vv HT.H1.L:=vv+1; HT.H1.LV:=HT.V; end; inc(aa);inc(c) end; c:=c shl 1; end; Until FilePtr=0; end; ... Здесь несколько сложнее. Дело в том,что мало просто загрузить эти таблицы. Необходимо также преобразовать их в удобный для ра─ боты декодера формат. Поэтому остановимся на этом поподробней. Для начала немного теории. Хаффман относится к статистическому кодированию, то есть символам с большим числом вхождений в файл присваивается код с меньшей разрядностью, с меньшим числом - бо─ льшая разрядность. Таким образом образуется символьный алфавит с непропорциональными длинами присвоенных ему кодов. За счет этого достигается сжатие групп символов. В результате чего образуется выходной битовый поток данных. Для успешного декодирования бито─ вого потока необходимо иметь таблицы соответствия символов и их кодов соответствующей длины. Нас будут интересовать коды длин от 0 до 15, то есть 16 бит максимум. Вернёмся к нашему фрагменту кода. В начале стоит информацион─ ный байт, в нём: биты 0..3 - номер таблицы Хаффмана; бит 4 - тип таблицы 0=DC/1=AC. За ним следует 16 байт, которые описывают количество символов с длиной кодов от 1 до 16, сумма этих байтов есть общее количество кодов и не должна превышать 256. Потом идут символы в порядке увеличения длин кодов. Внимание!!! Идут символы, но не их коды. То есть коды нам ещё придётся им присво─ ить. Один DHT сегмент может иметь в себе несколько таблиц,каждую со своим информационным байтом. Всего таких таблиц может быть 8: 4 для DC и 4 для AC. Мы имеем таблицу символов и их длин. Теперь нам необходимо определить коды Хаффмана для каждого символа. Делается это по следующему алгоритму: вначале стартовый код c = 0; по порядку проходим все символы нашей таблицы от длины 1 до 16; на каждой итерации увеличиваем значение кода на единицу; при изменении длины кода умножаем код на 2, что равносильно сдвигу кода на один разряд влево. В результате имеем полную таб─ лицу всех символов и соответствующих им кодов Хаффмана. Что с ней делать дальше, станет понятно позже. Пока нам необходимо просто сохранить все эти данные. DQT: Определить таблицу квантизации (ТК): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - $ff, $db (DQT) - длина (старший, младший байт) - информационный байт ТК: бит 0..3: номер ТК (0..3, иначе ошибка) бит 4..7: точность ТК, 0 = 8 бит, иначе 16 бит - n байт ТК, n = 64*(точность+1) Комментарий: - один DQT сегмент может содержать несколько таблиц, каждая со своим информационным байтом. - для точности 1 (16 бит) порядок следования - старший, потом младший (для каждого из 64 слов). ... $DB: begin Repeat { Define Quantization Tables } hh:=ReadByte; For vv:=0 to $3F do if Hi4(hh)=0 then qtmp:=ReadByte; for m:=0 to 63 do Quant:=qtmp]; for v:=0 to 7 do for w:=0 to 7 do begin if w=0 then cw:=frac else cw:=round(frac*cos((w*PI)/16)*sqrt(2)); if v=0 then cv:=frac else cv:=round(frac*cos((v*PI)/16)*sqrt(2)); cw:=(cw*cv) shr prec; Quant:=mul1(Quant,cw); end; Until FilePtr=0; end; ... Таблицы квантизации необходимы для восстановления частотной матрицы и имеют размерность 8x8, то есть всего таких коэффициен─ тов в одной матрице будет 64. На листинге: вначале считывается информационный байт, в нём биты 0..3 - номер таблицы квантизации от 0 до 3; биты 4..7 - разрядность элементов матрицы (0=8 бит, иначе 16 бит). Далее выполняется чтение и масштабирование элеме─ нтов. Один DQT сегмент может содержать несколько таблиц кванти─ зации, каждую со своим информационным байтом. Большинство жпегов рассчитаны на 8-битные таблицы. DRI: Определить интервал перезапуска: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - $ff, $dd (DRI) - длина (старший, младший байт) = 4 - рестарт интервал (старший, младший байт) в единицах MCU блоков - это значит, что через каждые n MCU блоков может быть найден маркер RSTn. Первый маркер должет быть RST0, затем RST1, и так далее, до RST7, затем снова RST0. ... $DD: begin RestartInterval:=ReadWord end ... Всё, что необходимо сделать,- это сохранить его в переменной. Отмечу, что встречаются они крайне редко. SOS: Начало сканирования: ~~~~~~~~~~~~~~~~~~~~~~~~~ - $ff, $da (SOS) - длина (старший, младший байт), 6+2*(кол.компонент сканирования) - количество компонент сканирования (1 байт), должно быть >= 1 и - для каждого компонента: 2 байта - идентификатор компонента (1=Y, 2=Cb, 3=Cr), смотреть SOF0 - используемая таблица Хаффмана: - бит 0..3: AC таблица (0..3) - бит 4..7: DC таблица (0..3) - 3 байта, должны быть пропущены (???) Комментарий: - Данные жпега следуют сразу за SOS сегментом. $DA: begin m:=ReadByte; { Start Of Scan } For hh:=0 to m-1 do begin Scan.Cmp:=ReadByte; vv:=ReadByte; Scan.TD:=Hi4(vv); Scan.TA:=Lo4(vv) end; Scan.Ss:=ReadByte; Scan.Se:=ReadByte; vv:=ReadByte; Scan.Ah:=Hi4(vv); Scan.Al:=Lo4(vv) end; За ним следует количество сканируемых компонент - обычно 1 либо 3. Далее для каждой компоненты следуют 2 байта: 1-й - иден─ тификатор компоненты (1=Y, 2=Cb, 3=Cr), 2-й - Номер используемой таблицы Хаффмана, здесь биты 0..3 = AC таблица (0..3), 4..7 = DC таблица (0..3). Затем идут 3 байта которые необходимо пропус─ тить. Как было уже сказано раньше, этот маркер является послед─ ним, за ним непосредственно следуют сжатые данные жпега. Итак, все приготовления сделаны, теперь необходимо переходить непосредственно к самому процессу декодирования жпега.Для начала объясню, как расположены сжатые данные. Информация в жпеге хра─ нится блоками 8x8, то есть по 64 байта на каждую из компонент Y/Cb/Cr. Хотя это частный случай,когда сэмплинг фактор 1:1:1, но об этом позже. Сразу за Y компонентой следуют Cb и Cr, таким об─ разом, мы имеем всего 3*64 байта на блок 8x8 изображения. Блоки начинаются с левого верхнего угла изображения и идут слева направо и сверху вниз. То есть мы постепенно спускаемся вниз. В конце этого битстрима стоит маркер конца жпега EOI, который нам не обязательно отслеживать, ведь мы и так уже знаем сколько пик─ селей, а соответственно, и блоков в нашем жпеге. Все байтовые выравнивания маркеров осуществляются заполнением оставшихся би─ тов единицами, поэтому, если в потоке встречается байт FF, его необходимо пропускать. Общий список стадий декодирования выглядит следующим образом: 1) Хаффман декодер (декодирование DC/AC коэффициентов) 2) Деквантизация вектора из 64 элементов 3) Зиг-Заг сортировка и восстановление блока 8x8 4) Применение к блоку ОДКП Повторить первые 4 стадии для каждого блока 8x8, каждого ком─ понента изображения Y/Cb/Cr. 5) Масштабирование Cb/Cr 6) Преобразование уровня 7) Преобразование YCbCr->RGB Все эти стадии описывают лишь декодирование одного блока пик─ селей MCU. Для остальных необходимо повторить эти стадии,попутно считывая данные из файла и копируя их в соответствующее место на экране или в буфере. Рассмотрим подробно каждую стадию. 1. Хаффман декодер Все данные закодированы Хаффманом, этим достигается конечное сжатие жпега. Что представляет собой этот вид кодирования? Как я уже писал, каждому кодируемому символу сопоставляется код Хаффмана в зависимости от частоты появления символа в потоке. Чем меньше вероятность появления символа, тем большей длины код ему назначается, и наоборот. Тем самым происходит так называемое непропорциональное кодирование. За счёт этого производится опти─ мизация избыточности. В результате мы имеем битовый поток (бит─ стрим). Так как данные имеют битовую структуру, а текущий код имеет неизвестно какую длину, наш дисковый драйвер должен уметь читать данные последовательно бит за битом. Далее на каждой ите─ рации необходимо добавлять бит к уже имеющимся и проверять соот─ ветствие по таблицам Хаффмана.Если код найден,то раскодированное значение сохраняется, иначе продолжается декодирование. Встаёт вопрос, как можно быстро найти текущий код в таблице? Вначале приведу процедуру чтения битового потока: procedure NextBit(var V:byte); begin V:=(V shl 1)+Read1bit end; function Read1bit:byte; { Take one bit from Current Byte } begin if Current_bit=0 then begin ReadByte; if Current_byte=$FF then begin Repeat ReadByte Until Current_byte if (Current_byte>=$D0) and (Current_byte FillChar(DC,SizeOf(DC),0);ReadByte; end; if Current_byte=0 then Current_byte:=$FF; end end; Read1bit:=(Current_byte shr 7) and 1; Current_byte:=Current_byte shl 1; inc(Current_bit); if Current_bit=8 then Current_bit:=0 end; Как видно, процедура NextBit просто добавляет следующий бит к переменной V. Функция Read1bit возвращает следующий считаный бит из потока. Она также пропускает байт FF и инициализирует все DC коэффициенты, в случае, если встречается маркер RST0-RST7 (D0-D7). Теперь перейдем к сути, декодеру: function hd(T,C:byte):byte; { Decoding Huffman Code from bitstream } var v,code:byte; begin v:=0; { L - HuffCode len; L=0 - no code; L=len+1 (1..8) lookup } NextBit(v); if HT.H1.L=1 then begin hd:=HT.H1.LV;exit end; NextBit(v); if HT.H1.L=2 then begin hd:=HT.H1.LV;exit end; NextBit(v); if HT.H1.L=3 then begin hd:=HT.H1.LV;exit end; NextBit(v); if HT.H1.L=4 then begin hd:=HT.H1.LV;exit end; NextBit(v); if HT.H1.L=5 then begin hd:=HT.H1.LV;exit end; NextBit(v); if HT.H1.L=6 then begin hd:=HT.H1.LV;exit end; NextBit(v); if HT.H1.L=7 then begin hd:=HT.H1.LV;exit end; NextBit(v); if HT.H1.L=8 then begin hd:=HT.H1.LV;exit end; { SV - Start Value (aa-w); EV - Next Code Len Value } NextBit(v);code:=v+HT.H2.SV; if code NextBit(v);code:=v+HT.H2.SV; if code then begin hd:=HT.H1.V;exit end; NextBit(v);code:=v+HT.H2.SV; if code then begin hd:=HT.H1.V;exit end; NextBit(v);code:=v+HT.H2.SV; if code then begin hd:=HT.H1.V;exit end; NextBit(v);code:=v+HT.H2.SV; if code then begin hd:=HT.H1.V;exit end; NextBit(v);code:=v+HT.H2.SV; if code then begin hd:=HT.H1.V;exit end; NextBit(v);code:=v+HT.H2.SV; if code then begin hd:=HT.H1.V;exit end; NextBit(v);code:=v+HT.H2.SV; if code then begin hd:=HT.H1.V;exit end; hd:=$ff; end; Хочу привести вам результаты своих экспериментов в данной области. Еще раз предупреждаю, что практически всё, о чем я буду говорить и говорил раньше, есть результат моих собственных домы─ слов, поэтому может отличаться от общепринятых методов и форму─ лировок. Как выяснилось, большая часть кодов не превышает 8 бит, таким образом, можно создать 256-байтную таблицу перекодировки. В этом случае декодирование происходит экстремально быстро: всё, что нам нужно - просто взять из таблицы уже готовое значение. В случае, если код >8 бит, тут немного сложнее. Нам нужно знать все начальные позиции SV и конечные позиции EV для длин кодов 8..16. То есть надо создать табличку значений, а вернее, три таблички. Первая будет содержать последовательно все наши закодирован─ ные символы, назовём её таблицей V. Расскажу, как сформировать две другие. Для каждой длины кода от 8..16 нужно задать началь─ ную позицию SV = смещению первого кода в таблице V минус сам первый код. Например, у нас есть код %110 = 6, идёт он под номе─ ром 5 в таблице, тогда SV = 5 - 6 = -1. Третья таблица должна содержать конечную позицию EV для текущей длины кода. Как и в предыдущем случае, для всех длин кодов от 8..16 нужно задать EV = смещению первого кода в таблице V плюс количество кодов этой длины. По предыдущему примеру, если количество кодов теку─ щей длины L = 4, то EV = 5 + 4 = 9. Всё это было приведено рань─ ше в куске кода обработки маркера DHT. Теперь объясню,для чего это всё нужно.В соответствии с нашими таблицами,как показано во фрагменте кода выше,поиск значения ко─ да выполняется следующим образом.Для соответствующей длины кода: складываем текущий код и SV, code = v + SV; если code Ред.: Поскольку биты из потока приходится читать в любом ме─ тоде декодирования Хаффмана, то проще (и,как ни странно,быстрее, если вести разговор о процессоре Z80) декодировать коды непосре─ дственно по дереву, бит за битом, не используя дополнительных таблиц. Соответствующие процедуры вы можете позаимствовать из распаковщика smallunr.H (см.в приложении). В ZXUnRar декодирова─ ние тоже идёт побитно, но для этого предварительно генерируется процедура разбора кодов Хаффмана на основе текущего дерева, поэ─ тому получается ещё более высокая скорость декодирования. Если вы думаете, что процесс декодирования коэффициентов на этом заканчивается, то вы ошибаетесь - он только начинается:). Пока мы имеем только раскодированные байты,из которых необходимо получить коэффициенты DC/AC. Плюс ко всему для увеличения эффек─ тивности сжатия было добавлено RLC сжатие последовательности нулей. Посмотрим, как раскодировать эти коэффициенты. Декодирование DC коэффициента производится по следующему ал─ горитму: В начале DC = 0 а) извлечение соответствующего кода Хаффмана (проверяем в таблице Хаффмана для DC) б) смотрим, к какой категории этот код принадлежит в) читаем N = биты категории, и определяем значение Diff = = (категория, N битов) г) DC = DC + Diff д) пишем DC в 64-элементный вектор: vector = DC Декодирование AC коэффициентов производится по следующему алгоритму: Для каждого AC коэффициента, пока не встретился EOB и AC_counter а) извлечение соответствующего кода Хаффмана (проверяем в таблице Хаффмана для AC) б) декодируем код Хаффмана в соответствии с (кол_пред_0, категория) в) читаем N=биты категории, и определяем значение AC = = (категория, N битов) г) пишем в 64х элементный вектор последовательность нулей = = кол_пред_0 д) увеличиваем AC_counter на кол_пред_0 е) пишем AC в 64-элементный вектор: vector = AC Фрагмент кода для чтения коэффициентов DC/AC выглядит следую─ щим образом: hb:=HD(0,Scan.TD[b]); vec:=DC[b]+Bits2Integer(Lo4(hb),ReadBits(Lo4(hb))); DC[b]:=vec;xx:=1; if method$C2 then Repeat hb:=HD(1,Scan.TA[b]); if hb=0 then Repeat vec:=0; inc(xx) Until xx>=64 else begin yy:=Hi4(hb); for m:=1 to yy do begin vec:=0; inc(xx) end; vec:=Bits2Integer(Lo4(hb),ReadBits(Lo4(hb))); inc(xx) end Until xx>=64; Объясню подробнее. Сначала определяем DC. Для этого нужно декодировать Diff. Кодируется он двумя элементами (кат, Nбит). В начале идут 4 бита (тетрада) категории, представляющие собой длину считываемого кода, которая и кодируется Хаффманом. То есть сначала декодируем её, а затем, уже зная длину кода Diff, читаем N бит. Далее идёт преобразование N битов в знаковое слово по следующим правилам: Значение Категория Биты 0 0 - -1,1 1 0,1 -3,-2,2,3 2 00,01,10,11 -7,-6,-5,-4,4,5,6,7 3 000,001,010,011,100,101,110,111 -15..-8,8..15 4 0000..0111,1000..1111 -31..-16,16..31 5 00000..01111,10000..11111 -63..-32,32..63 6 . -127..-64,64..127 7 . -255..-128,128..255 8 . -511..-256,256..511 9 . -1023..-512,512..1023 10 . -2047..-1024,1024..2047 11 . -4095..-2048,2048..4095 12 . -8191..-4096,4096..8191 13 . -16383..-8192,8192..16383 14 . -32767..-16384,16384..32767 15 . Преобразованием занимается следующий код: function Bits2Integer(bits:byte; value:word):integer; begin if (value and (1 shl (bits-1))>0) then Bits2Integer:=value else Bits2Integer:=-(value xor (1 shl bits-1)); end; В конце определяем значение DC как сумму предыдущего DC и найденного Diff. Итоговое значение сохраняется в векторе по ну─ левому смещению. Теперь о том, как определить коэффициенты AC. Здесь сложнее - их может быть несколько. Кроме того, дополнительно используется кодирование последовательности нулей (RLC). Для каждого элемента от 2 до 64 необходимо декодировать байт, содержащий в тетрадах данные (кол_пред_0, категория), где кол_пред_0 = количество предшествующих нулей. Далее от текущей позиции необходимо запол─ нить вектор нулями в количестве кол_пред_0. При этом, если байт равен (0,0), то это признак конца блока EOB, в этом случае оставшиеся элементы вектора заполняются нулями, и на этом запол─ нение вектора заканчивается. Если этого не произошло,выполняется чтение группы из Nбит бит и преобразование значения AC коэффици─ ента, как и в предыдущем случае. Декодирование DC/AC коэффициентов необходимо выполнять по со─ ответствующим таблицам Хаффмана. Ещё один момент. Существует два формата следования данных в жпеге. Первый называется baseline (маркер С0), о нём я и писал, в нём все 64 коэффициента вектора идут подряд. Жпеги этого типа открываются за один проход сверху вниз. Существует ещё один формат - progressive (маркер C2). В нём за один кадр считывается только один коэффициент, сначала DC, далее последовательно все AC. Таким образом один общий скан разбивается на несколько последовательно идущих сканов. Количес─ тво коэффициентов зависит от качества сжатия жпега. Для открытия жпега этого типа необходим кадровый буфер для хранения коэффици─ ентов DC/AC. Преимуществом данного типа является возможность увидеть кадр изображения, не дожидаясь конца файла. Чтение сле─ дующей порции коэффициентов будет лишь улучшать качество картин─ ки, кадр будет как бы фокусироваться. Ввиду сложности реализации прогрессивной развертки, я не стал поддерживать её полностью, сделав лишь чтение первого скана, содержащего DC коэффициенты. 2. Деквантизация вектора из 64х элементов На этой стадии выполняется восстановление оптимизированных коэффициентов вектора. Выполняется это следующим образом. На этапе подготовки было выполнено чтение всех необходимых нам таб─ лиц квантизации. Всё, что нам теперь нужно,- просто умножить все элементы нашего вектора на соответствующие элементы таблицы ква─ нтизации. Можно объединить эту стадию со стадией ОДКП (обратное ДКП), как поступил я сам. 3. Зиг-Заг сортировка и восстановление блока 8x8 На этапе сжатия, при переводе блока 8x8 в вектор,коэффициенты обходились зигзагом. Это было необходимо для лучшей группировки последовательности нулей. Теперь нам необходимо сделать обратную операцию - восстановить блок 8x8 из вектора. Приведу порядок следования коэффициентов в матрице: 0 1 5 6 14 15 27 28 2 4 7 13 16 26 29 42 3 8 12 17 25 30 41 43 9 11 18 24 31 40 44 53 10 19 23 32 39 45 52 54 20 22 33 38 46 51 55 60 21 34 37 47 50 56 59 61 35 36 48 49 57 58 62 63 То есть элементы вектора необходимо записывать в ячейки мат─ рицы, в соответствии с их порядковыми номерами. В результате мы имеем полностью восстановленную матрицу для последующей,пожалуй, самой важной из всех, стадии. 4. Применение к блоку ОДКП Это самая интересная часть декодирования. ОДКП (Обратное Дис─ кретное Косинусное Преобразование) относится к семейству преоб─ разований Фурье и выполняет преобразование данных из частотной области во временную. То есть на входе мы имеем матрицу частот, после применения ОДКП будет матрица дискретных значений, или яркости, пикселей. Главная трудность этой стадии состоит в том, что на самом деле преобразования Фурье выполняются слишком мед─ ленно. Не стану здесь расписывать всякие классические математи─ ческие формулы и выкладки, на эту тему можно написать целую книгу, приведу лишь самое, на мой взгляд, оптимальное решение. Существует семейство быстрых алгоритмов преобразования Фурье - ОБПФ (Обратное Быстрое Преобразование Фурье). Из множества дан─ ных методов я выбрал схему AA&N, как самую быструю. Единственный минус данного метода - небольшая потеря точности, хотя на глаз я её не заметил. Приведу фрагмент кода, считающий матрицу 1x8: ... { Even part } t0:=tout;t1:=tout; t2:=tout;t3:=tout; t10:=t0+t2;t11:=t0-t2;t13:=t1+t3; t12:=(t1-t3)*(2*c4)-t13; t0:=t10+t13;t3:=t10-t13; t1:=t11+t12;t2:=t11-t12; { Odd part } t4:=tout;t5:=tout; t6:=tout;t7:=tout; z13:=t6+t5;z10:=t6-t5; z11:=t4+t7;z12:=t4-t7; t7:=z11+z13; t11:=(z11-z13)*(2*c4); z5:=(z10+z12)*(2*c2); t10:=(2*(c2-c6))*z12-z5; t12:=(-2*(c2+c6))*z10+z5; t6:=t12-t7;t5:=t11-t6;t4:=t10+t5; tout:=t0+t7;tout:=t0-t7; tout:=t1+t6;tout:=t1-t6; tout:=t2+t5;tout:=t2-t5; tout:=t3+t4;tout:=t3-t4; ... Здесь: tout - рабочая матрица 1x8 i - номер текущей строки матрицы Константы: c2 = cos(2*PI/16); c4 = cos(4*PI/16); c6 = cos(6*PI/16); Данным кодом необходимо пройтись вначале по всем строкам на─ шей 8x8 матрицы, а затем по всем столбцам. Получается 16 итера─ ций: 8 на строки + 8 на столбцы. При обработке столбцов перед финальной записью результата следует разделить его на 8, этого требует специфика метода. Есть ещё одна тонкость, без которой алгоритм не будет работать. Перед обработкой начальную матрицу необходимо умножить на константу. Вот как это будет выглядеть: ... for j:=0 to 7 do for i:=0 to 7 do begin if i=0 then ci:=1 else ci:=cos((i*PI)/16)*sqrt(2); if j=0 then cj:=1 else cj:=cos((j*PI)/16)*sqrt(2); tout:=tin*ci*cj; end; ... Как видно, если номер элемента не нулевой,нужно умножить этот элемент на cos((i*PI)/16)*sqrt(2), иначе на единицу, то же самое и по j. Эти ухищрения делаются для уменьшения количества умноже─ ний в цикле обработки. Если предварительно перемножить данные константы с таблицами квантизации и объединить стадии 2 и 4, то есть включить в ОБПФ деквантизацию,можно выиграть немного скоро─ сти. Это и было проделано раньше при обработке маркера DQT, смо─ треть фрагмент кода. Все описанные выше этапы позволяют получить коэффициенты то─ лько одной компоненты (Y/Cb/Cr). Поэтому четыре первые стадии необходимо повторить для каждой компоненты, если, конечно, жпег полноцветный. Далее следует описание стадий уже после декодиро─ вания всех 3 компонент. ──────────────────────────────────────────────────────────────── 5. Масштабирование Cb/Cr В результате предыдущих стадий была получена информация о 3 компонентах Y/Cb/Cr. То есть 3 блока 8x8, описывающие пиксели изображения. На самом деле это является частным случаем, когда масштаб (сэмплинг фактор) компонент Y/Cb/Cr=1:1:1, но так бывает не всегда. Часто масштаб компонент принимается 2:1:1, что озна─ чает, что на 2 элемента яркости Y приходится по 1 элементу цвет─ ности Cb/Cr. Тоже самое происходит и по другой координате, то есть и по X, и по Y. Эти данные загружались раньше,при обработке маркера SOS. Существует понятие минимального кодированного блока - MCU (Minimum Coded Unit), которое описывает блок изображения. При сэмплинг факторе 1:1:1 MCU равен 8x8. При 2:1:1 MCU равен 16x16. Во втором случае получается, что данных Y компоненты в 4 раза больше, чем для Cb/Cr. Если представить блок 8x8 как DU (DataUnit), то последний случай запишется в виде: YDU, YDU, YDU, YDU, CbDU, CrDU. На 4 блока данных для яркости Y приходится по одному блоку цветности Cb/Cr. Такое допущение позволяет получить ещё большее сжатие при практически незаметном ухудшении качества картинки. С учётом сказанного для каждой компоненты необходимо также учитывать масштаб и выполнять полностью загрузку MCU. Блоки данных из 64 элементов распологаются в MCU слева направо, сверху вниз. После того, как будет загружена полностью информа─ ция о всех компонентах, необходимо выполнить ресэмплинг, то есть отмасштабировать,если необходимо, компоненты Cb/Cr. При сэмплинг факторе 2:1:1 в результате получим 3 матрицы элементов 16x16. В случае 1:1:1 все компоненты идут один к одному,и масштабирование выполнять не нужно, MCU будет равен 8x8. В принципе, бывают и другие вариации, например, Cb/Cr по X может быть на 2 юнита (1:1:1), а по Y на 1 (2:1:1). Но такие случаи бывают крайне редко, я не стал морочить ими голову и поддержал только два пер─ вых. 6. Преобразование уровня Необходимо преобразовать значения наших компонент из знаковой в беззнаковую форму. Сделать это очень просто - всё, что нужно,- это прибавить 128 ко всем 8-битным знаковым значениям наших ком─ понент. На данном этапе также выполняются регулировки яркостного и цветового баланса. Если в таблицах яркости и цветности учесть сразу и значение уровня, то данное преобразование будет выполня─ ться автоматически. 7. Преобразование YCbCr->RGB Это преобразование является заключительным этапом декодирова─ ния и осуществляет преобразование из цветового пространства YCbCr в формат экранных пикселей RGB. Делается это по стандарт─ ным формулам: R = Y + 1.402 *(Cr-128) G = Y - 0.34414*(Cb-128) - 0.71414*(Cr-128) B = Y + 1.772 *(Cb-128) Все значения YCbCr - 8 битные беззнаковые. В результате имеем декодированные пиксели изображения в формате true color (по 8 бит на компоненту). ──────────────────────────────────────────────────────────────── Вот,собственно,и всё,о чём я хотел вам рассказать.Изначально, правда, задумывалось написать статью в формате спековского асма, но, учитывая неподъёмность исходников, пришлось отказаться от этой затеи и расписать на примере пасовских фрагментов. Можно было бы ещё написать про масштабирование полученного изображе─ ния, про его обработку выходными фильтрами, но это тема отдель─ ной статьи. Да и без этого, думаю, информации для размышления подкинул достаточно. Так что, господа кодеры, изучайте, думайте и пишите качественные декодеры жпега для нашего любимого спекки. Ред.: В приложении лежит просмотрщик xjpeg by scor^3umf и исходники этого просмотрщика (публикация исходников не означает, что автор забросил этот проект - перед внесением каких-либо изменений свяжитесь с автором по адресу [email protected] ). «Реализация алгоритмов

JPEG и JPEG2000»

Выполнил:

студент группы 819

Угаров Дмитрий

Принципы работы алгоритмов JPEG и JPEG2000

1. Алгоритм JPEG

JPEG (англ. Joint Photographic Experts Group - объединённая группа экспертов в области фотографии) - является широко используемым методом сжатия фотоизображений. Формат файла, который содержит сжатые данные обычно также называют именем JPEG; наиболее распространённые расширения для таких файлов.jpeg, .jfif, .jpg, .JPG, или.JPE. Однако из них.jpg самое популярное расширение на всех платформах.

Алгоритм JPEG является алгоритмом сжатия с потерей качества .

Область применения

Формат является форматом сжатия с потерями, поэтому некорректно считать что JPEG хранит данные как 8 бит на канал (24 бит на пиксель). С другой стороны , так как данные, подвергающиеся компрессии по формату JPEG и декомпрессированные данные обычно представляются в формате 8 бит на канал, иногда используется эта терминология. Поддерживается также сжатие чёрно-белых полутоновых изображений.

При сохранении JPEG-файла можно указать степень качества, а значит и степень сжатия, которую обычно задают в некоторых условных единицах, например, от 1 до 100 или от 1 до 10. Большее число соответствует лучшему качеству, но при этом увеличивается размер файла. Обыкновенно, разница в качестве между 90 и 100 на глаз уже практически не воспринимается. Следует помнить , что побитно восстановленное изображение всегда отличается от оригинала. Распространённым заблуждением является мнение о том, что качество JPEG тождественно доле сохраняемой информации.

Этапы кодирования

Процесс сжатия по схеме JPEG включает ряд этапов:

1. Преобразование изображения в оптимальное цветовое пространство;

В случае применения цветового пространства яркость/цветность (YCbCr) достигается лучшая степень сжатия. На данном этапе кодирования с помощью соответствующих соотношений цветовая модель RGB преобразуется в YCbCr:

Y = 0.299*R + 0.587*G + 0.114*B

Cb = - 0.1687*R – 0.3313*G + 0.5*B

Cr = 0.5*R – 0.4187*G – 0.0813*B.
Во время декодирования можно использовать соответствующее обратное преобразование:
R = Y + 1.402*Cr

G = Y – 0.34414*Cb – 0.71414*Cr

B = Y + 1.772*Cb.
Примечание, связывающее Y,Cb,Cr в человеческой визуальной системе:

Глаз, особенно сетчатка, имеет как визуальные анализаторы два типа ячеек: ячейки для ночного видения, воспринимающие только оттенки серого (от ярко-белого до темно-черного) и ячейки дневного видения, которые воспринимают цветовой оттенок. Первые ячейки , дающие цвет RGB, обнаруживают уровень яркости, подобный величине Y. Другие ячейки, ответственные за восприятие цветового оттенка, - определяют величину, связанную с цветоразностью.


2. Субдискретизация компонентов цветности усреднением групп пикселей;

Большая часть визуальной информации, к которой наиболее чувствительный глаза человека , состоит из высокочастотных, полутоновых компонентов яркости (Y) цветового пространства YCbCr. Две другие составляющие цветности (Cb и Cr) содержат высокочастотную цветовую информацию, к которой глаз человека менее чувствителен. Поэтому определенная ее часть может быть отброшена и, тем самым, можно уменьшить количество учитываемых пикселей для каналов цветности.

1)тип 4:2:0 (когда изображение разбивается на квадраты 2х2 пикселей и в каждом из них все пиксели получают одинаковые значения каналов Cb и Cr, а яркость Y у остается у каждого своя)

2) тип 4:2:2 (объединение по компонентам цветности происходит только по горизонтали в группах по два пикселя).

3)тип 4: 4: 4 подразумевает, что каждому пикселю в каждой строке соответствует собственное уникальное значение компонентов Y, Cb и Cr. (рис.1 а)

4) тип 4:2:2. Выполнив субдискретизацию сигнала цветности с коэффициентом 2 по горизонтали, мы получим из потока 4: 4: 4 YCbCr поток 4: 2: 2 YCbCr. Запись «4: 2: 2» означает , что в отдельно взятой строке на 2 значения цветности приходятся 4 значения яркости (см. рис.1 б). Сигнал 4: 2: 2 YCbCr очень немного проигрывает по качеству изображения сигналу 4: 4: 4 YCbCr, зато требуемая ширина полосы сокращается на 33% от исходной.

3. Применение дискретных косинусных преобразований для уменьшения избыточности данных изображения;

Основным этапом работы алгоритма является дискретное косинусное преобразование (ДКП или DCT), представляющее собой разновидность преобразования Фурье. Оно применяется при работе с изображениями в различных целях, не только с целью сжатия. Переход к частотному представлению величин значений пикселей позволяет по-другому взглянуть на изображение, обработать его, ну, и, что интересно для нас, сжать. Более того , зная коэффициенты преобразования, мы всегда может произвести обратное действие - вернуть исходную картинку.

DCT непосредственно применяемый к блоку (в нашем случае 8х8 пикселей) изображения будет выглядеть так:

где х, y - пространственные координаты пикселя (0..7) ,

f(x,y) - значения пикселей исходного макроблока (допустим, яркость)

u,v - координаты пикселя в частотном представлении (0..7)

w(u) =1/SQRT(2) при u=0, в остальных случаях w(u)=1 (SQRT - квадратный корень)

w(v) =1/SQRT(2) при v=0, в остальных случаях w(v)=1

Или в матричной форме:

4. Квантование каждого блока коэффициентов ДКП с применением весовых функций , оптимизированных с учетом визуального восприятия человеком;

Дискретное косинусное преобразование подготавливает информацию для сжатия с потерями и округления. Для каждого элемента преобразуемой матрицы существует соответствующий элемент матрицы квантования. Результирующая матрица получается делением каждого элемента преобразуемой матрицы на соответствующий элемент матрицы квантования и последующим округлением результата до ближайшего целого числа. При составлении матрицы квантования большие ее элементы находятся в левом нижнем углу, чтобы при делении на них данные в этом углу после дискретного косинусного преобразования (как раз те, округление которых пройдет менее болезненно) округлялись более грубо. Соответственно потерянная информация менее важна для нас, чем оставшаяся.


5. Этап Вторичного Сжатия

Заключительной стадией работы кодера JPEG является кодирование полученной матрицы.

5.1 Зигзагообразная перестановка 64 DCT коэффициентов

Так, после того, как мы выполнили DCT-преобразование над блоком величин 8x8, у нас есть новый блок 8x8. Затем, этот блок 8x8 просматривается по зигзагу подобно этому:

(Числа в блоке 8x8 указывают порядок , в котором мы просматриваем 2-мерную матрицу 8x8)

0, 1, 5, 6,14,15,27,28,

2, 4, 7,13,16,26,29,42,

3, 8,12,17,25,30,41,43,

9,11,18,24,31,40,44,53,

10,19,23,32,39,45,52,54,

20,22,33,38,46,51,55,60,

21,34,37,47,50,56,59,61,

35,36,48,49,57,58,62,63

Как Вы видите, сначала - верхний левый угол (0,0), затем величина в (0,1), затем (1,0), затем (2,0), (1,1), (0,2), (0,3), (1,2), (2,1), (3,0) и т.п.

После того, как мы прошли по зигзагу матрицу 8x8, мы имеем теперь вектор с 64 коэффициентами (0..63) Смысл этого зигзагообразного вектора – в том, что мы просматриваем коэффициенты 8x8 DCT в порядке повышения пространственных частот. Так, мы получаем вектор отсортированный критериями пространственной частоты: первая величина на векторе (индекс 0) соответствует самой низкой частоте в изображении – она обозначается термином DC. С увеличением индекса на векторе, мы получаем величины соответствующие высшим частотам (величина с индексом 63 соответствует амплитуде самой высокой частоте в блоке 8x8). Остальная часть коэффициентов DCT обозначается AC.

5.2 RunLength кодирование нулей (RLE)

Теперь у нас есть вектор с длинной последовательностью нулей. Мы можем использовать это, кодируя последовательные нули. ВАЖНО: Вы увидите позже почему, но здесь мы пропускаем кодировку первого коэффициента вектора (коэффициент DC), который закодирован по-другому. Рассмотрим исходный 64 вектор как 63 вектор (это - 64 вектор без первого коэффициента)

Допустим, мы имеем 57,45,0,0,0,0,23,0,-30,-16,0,0,1,0,0,0,0,0,0, только 0,...,0

Здесь - как RLC JPEG сжатие сделано для этого примера:

(0,57); (0,45); (4,23); (1,-30); (0,-16); (2,1); EOB

Как Вы видите, мы кодируем для каждой величины, отличающейся от 0 количество последовательных ПРЕДШЕСТВУЮЩИХ нулей перед величиной, затем мы добавляем величину. Другое примечание: EOB - короткая форма для Конца Блока , это - специальная кодированная величина (маркер). Если мы достигли в позиции на векторе, от которого мы имеем до конца только нули вектора, мы выделим эту позицию с EOB и завершим сжатие RLC квантованного вектора.

[Заметьте, что если квантованный вектор не оканчивается нулями (имеет последний элемент не 0), мы не будем иметь маркер EOB.]

(0,57); (0,45); (4,23); (1,-30); (0,-16); (2,1); (0,0)

Другая ОСНОВНАЯ вещь: Допустим, где-нибудь на квантованном векторе мы имеем:

57, восемнадцать нулей, 3, 0,0 ,0,0 2, тридцать-три нуля, 895, EOB

Кодирование Хаффмана JPG делает ограничение, по которому число предшествующих нулей должно кодироваться как 4-битовая величина - не может превысить 15.

Так, предшествующий пример должен быть закодирован как:

(0,57); (15,0) (2,3); (4,2); (15,0) (15,0) (1,895), (0,0)

(15,0) - специальная кодированная величина, которая указывает , что там следует за 16 последовательными нулями.

5.3 Конечный шаг - кодирование Хаффмана

Сначала ВАЖНОЕ примечание: Вместо хранения фактической величины, JPEG стандарт определяет, что мы храним минимальный размер в битах, в котором мы можем держать эту величину (это названо категория этой величины) и затем битно кодированное представление этой величины подобно этому:

7,..,-4,4,..,7 3 000,001,010,011,100,101,110,111

15,..,-8,8,..,15 4 0000,..,0111,1000,..,1111

31,..,-16,16,..,31 5 00000,..,01111,10000,..,11111

63,..,-32,32,..,63 6 .

127,..,-64,64,..,127 7 .

255,..,-128,128,..,255 8 .

511,..,-256,256,..,511 9 .

1023,..,-512,512,..,1023 10 .

2047,..,-1024,1024,..,2047 11 .

4095,..,-2048,2048,..,4095 12 .

8191,..,-4096,4096,..,8191 13 .

16383,..,-8192,8192,..,16383 14 .

32767,..,-16384,16384,..,32767 15 .

Впоследствии для предшествующего примера:

(0,57); (0,45); (4,23); (1,-30); (0,-8); (2,1); (0,0)

давайте закодируем только правую величину этих пар, кроме пар, которые являются специальными маркерами подобно (0,0) или (если мы должны иметь) (15,0)

45, аналогично , будет закодирован как (6,101101)

30 -> (5,00001)

И теперь, мы напишем снова строку пар:

(0,6), 111001; (0,6), 101101; (4,5), 10111; (1,5), 00001; (0,4), 0111; (2,1), 1; (0,0)

Пары 2 величин, заключенные в скобки, могут быть представлены в байте, так как фактически каждая из 2 величин может быть представлена в 4-битном кусочке (счетчик предшествующих нулей - всегда меньше, чем 15 и также как и категория [числа закодированные в файле JPG - в области -32767..32767]). В этом байте, старший кусочек представляет число предшествующих нулей, а младший кусочек - категорию новой величины, отличной от 0.

Конечный шаг кодировки состоит в кодировании Хаффмана этого байта, и затем записи в файле JPG , как поток из битов, кода Хаффмана этого байта, сопровождающийся битовым представлением этого числа.

Например, для байта 6 (эквивалент (0,6)) у нас есть код Хаффмана = 111000;

21 = (1,5) - 11111110110

4 = (0,4) - 1011

33 = (2,1) - 11011

0 = EOB= (0,0) - 1010

Конечный поток битов записанных в файле JPG на диск для предшествующего примера 63 коэффициентов (запомните, что мы пропустили первый коэффициент) -

111000 111001 111000 101101 1111111110011001 10111 11111110110 00001

1011 0111 11011 1 1010
Достоинства и недостатки

К недостаткам формата следует отнести то, что при сильных степенях сжатия дает знать о себе блочная структура данных, изображение «дробится на квадратики» (каждый размером 8x8 пикселей). Этот эффект особенно заметен на областях с низкой пространственной частотой (плавные переходы изображения, например, чистое небо). В областях с высокой пространственной частотой (например, контрастные границы изображения), возникают характерные «артефакты» - иррегулярная структура пикселей искаженного цвета и/или яркости. Кроме того, из изображения пропадают мелкие цветные детали. Не стоит также забывать и о том, что данный формат не поддерживает прозрачность.

Однако, несмотря на недостатки, JPEG получил очень широкое распространение из-за высокой степени сжатия, относительно существующих во время его появления альтернатив.

2. Алгоритм JPEG2000

Алгоритм JPEG-2000 разработан той же группой экспертов в области фотографии, что и JPEG. Формирование JPEG как международного стандарта было закончено в 1992 году. В 1997 стало ясно, что необходим новый, более гибкий и мощный стандарт, который и был доработан к зиме 2000 года.

Основные отличия алгоритма в JPEG 2000 от алгоритма в JPEG заключаются в следующем:

1)Лучшее качество изображения при сильной степени сжатия. Или, что то же самое , большая степень сжатия при том же качестве для высоких степеней сжатия. Фактически это означает заметное уменьшение размеров графики "Web-качества", используемой большинством сайтов.

2)Поддержка кодирования отдельных областей с лучшим качеством. Известно, что отдельные области изображения критичны для восприятия человеком (например, глаза на фотографии), в то время как качеством других можно пожертвовать (например, задний план). При "ручной" оптимизации увеличение степени сжатия проводится до тех пор, пока не будет потеряно качество в какой-то важной части изображения. Сейчас появляется возможность задать качество в критичных областях, сжав остальные области сильнее, т.е. мы получаем еще большую окончательную степень сжатия при субъективно равном качестве изображения.

3)Основной алгоритм сжатия заменен на wavelet. Помимо указанного повышения степени сжатия это позволило избавиться от 8-пиксельной блочности, возникающей при повышении степени сжатия. Кроме того, плавное проявление изображения теперь изначально заложено в стандарт (Progressive JPEG, активно применяемый в Интернет, появился много позднее JPEG).

4)Для повышения степени сжатия в алгоритме используется арифметическое сжатие. Изначально в стандарте JPEG также было заложено арифметическое сжатие, однако позднее оно было заменено менее эффективным сжатием по Хаффману, поскольку арифметическое сжатие было защищено патентами. Сейчас срок действия основного патента истек , и появилась возможность улучшить алгоритм.

5)Поддержка сжатия без потерь. Помимо привычного сжатия с потерями новый JPEG теперь будет поддерживать и сжатие без потерь. Таким образом, становится возможным использование JPEG для сжатия медицинских изображений, в полиграфии, при сохранении текста под распознавание OCR системами и т.д.

6)Поддержка сжатия однобитных (2-цветных) изображений. Для сохранения однобитных изображений (рисунки тушью, отсканированный текст и т.п.) ранее повсеместно рекомендовался формат GIF, поскольку сжатие с использованием ДКП весьма неэффективно к изображениям с резкими переходами цветов. В JPEG при сжатии 1-битная картинка приводилась к 8-битной, т.е. увеличивалась в 8 раз, после чего делалась попытка сжимать, нередко менее чем в 8 раз. Сейчас можно рекомендовать JPEG 2000 как универсальный алгоритм.

7)На уровне формата поддерживается прозрачность. Плавно накладывать фон при создании WWW страниц теперь можно будет не только в GIF, но и в JPEG 2000. Кроме того, поддерживается не только 1 бит прозрачности (пиксель прозрачен/непрозрачен), а отдельный канал , что позволит задавать плавный переход от непрозрачного изображения к прозрачному фону.

Кроме того, на уровне формата поддерживаются включение в изображение информации о копирайте, поддержка устойчивости к битовым ошибкам при передаче и широковещании, можно запрашивать для декомпрессии или обработки внешние средства (plug-ins), можно включать в изображение его описание, информацию для поиска и т.д.

Этапы кодирования

Процесс сжатия по схеме JPEG2000 включает ряд этапов:

1. Преобразование изображения в оптимальное цветовое пространство.
На данном этапе кодирования с помощью соответствующих соотношений цветовая модель RGB преобразуется в YUV:

При декомпрессии применяется соответствующее обратное преобразование:

2. Дискретное вейвлет преобразование.

Дискретное wavelet преобразование (DWT) также может быть двух видов - для случая сжатия с потерями и для сжатия без потерь.

Это преобразование в одномерном случае представляет собой скалярное произведение соответствующих коэффициентов на строку значений. Но т.к. многие коэффициенты нулевые, то прямое и обратное вейвлет преобразование можно записать следующими формулами (для преобразования крайних элементов строки используется ее расширение на 2 пикселя в каждую сторону, значения которых симметричны с значениями элементов строки относительно ее крайних пикселей):
y(2*n + 1) = x(2*n + 1) - (int)(x(2*n) + x(2*n + 2)) / 2

y(2*n) = x(2*n) + (int)(y(2*n - 1) + y(2*n + 1) + 2) / 4

и обратное

x(2*n) = y(2*n) - (int)(y(2*n - 1) + y(2*n + 1) + 2) / 4

x(2*n + 1) = y(2*n + 1) + (int)(x(2*n) + x(2*n + 2)) / 2.

3. Квантование коэффициентов.

Так же как и в алгоритме JPEG , при кодировании изображения в формат JPEG2000 используется квантование. Дискретное вейвлет преобразование, так же как и его аналог, сортирует коэффициенты по частотности. Но, в отличие от JPEG, в новом формате матрица квантования одна на все изображение.


4. Этап Вторичного Сжатия

. Как и в JPEG, в новом формате последним этапом алгоритма сжатия является кодирование без потерь. Но, в отличие от предыдущего формата, в JPEG2000 используется алгоритм арифметического сжатия.

Программная реализация

В данной работе реализованы алгоритмы JPEG и JPEG2000. В обоих алгоритмах реализовано прямое и обратное кодирование (отсутствует последний этап вторичного сжатия). Расчет JPEG происходит довольно долго (порядка 30 секунд) в связи «прямым» высчитыванием DCT. Если потребуется увеличить скорость работы , следует изначально вычислить матрицу DCT(изменения производить в классе DCT).

Перейдем к рассмотрению программы:


  1. После запуска выводится окно, где

и сможете его сохранить , нажав кнопку (2) и введя желаемое название в диалоговом окне.

  • При достаточно большом Quality Factor изображение сильно измениться. Если это JPEG алгоритм то будут ярко выражены блоки размера 8x8.(в случае алгоритма JPEG2000, блочного деления не будет)
  • До:

    После:



    Старый добрый JPEG, несмотря на массу неоспоримых достоинств, все же имеет и существенные ограничения. Снять их был призван новый метод сжатия изображений, разработки которого велись уже давно. Теперь, когда JPEG2000 стал официально признанным форматом, это должно послужить началу его активной поддержки различными производителями ПО.

    Наверняка многих работающих с графикой на компьютере интересует вопрос: а как удается изображение, занимающее весьма впечатляющий объем в памяти ПК, втиснуть в гораздо меньший размер на диске? Помнится, на заре своей издательской деятельности слово «компрессия» для меня было таким загадочным и удивительным… В самом деле, каким образом происходит сжатие изображений — ведь без него сейчас немыслимо представить ни Сеть, ни цифровую фотографию, ни цветную полиграфию?

    Итак, сжатие. Оно может как приводить к потере качества, так и не приводить. Последний случай — это такие методы, как RLE (Run Length Encoding, кодирование длин серий, в результате которого образуются пары типа (skip , value , где skip — это число подряд идущих нулей, а value — следующее за ними значение) и LZW (компрессия методом Lempel-Ziff-Welch), реализованные в форматах PSD, GIF и TIFF. Широко используются они и архиваторами типа RAR и ZIP. Средняя степень компрессии сжатия без потерь — 2-3 раза.

    Если нужно сжать изображение сильнее, без потери качества не обойтись. Каковы принципы? Во-первых, любое изображение содержит определенную избыточность, удаление которой не приведет к заметному изменению качества картинки. Во-вторых, человеческий глаз более восприимчив к изменениям яркости, нежели цвета. Поэтому для разных каналов изображения применяются различные степени сжатия — информация теряется, но визуально это не заметно. Кроме того, чувствительность глаза к мелким элементам изображения невелика, что позволяет без ущерба для качества их удалить. Так можно сжимать изображение (даже если ухудшение качества становится уже заметным) вплоть до приемлемого порога. Степень деградации качества определяется для каждого конкретного случая. Для полиграфии допустимы лишь минимальные искажения, а для размещения в Интернете (в зависимости от предназначения) — гораздо большие.

    Наибольшую популярность среди методов компрессии с потерями получил JPEG, который даже при тридцатикратном сжатии сохраняет достаточное качество картинки. Кстати, в большинстве современных методов сжатия данных (например, Layer-4, известный как mp3, а также MPEG) реализованы механизмы, аналогичные JPEG. Давайте познакомимся поближе с этим форматом, тем более что не так давно была окончательно утверждена его новейшая реализация JPEG2000, в которую вошли все дополнения, внесенные в JPEG/MPEG за десять лет его развития.

    JPEG

    Название алгоритма компрессии — аббревиатура от Joint Photographic Expert Group, инициативной группы, образованной из экспертов ITU (International Telecommunication Union) и ISO (International Organization for Standartization). Именно поэтому в ее названии присутствует приставка Joint. В 1992 г. JPEG был объявлен международным стандартом в области графических изображений.

    При компрессии методом JPEG качество теряется всегда. При этом всегда есть выбор: отдать предпочтение качеству в ущерб объему (размер файла сожмется приблизительно в три раза) или же наоборот, добиться минимального размера изображения, при котором оно еще останется узнаваемым (степень компрессии может достигать 100). Сжатие, при котором различие в качестве между получающимся изображением и оригиналом еще остается незаметным, дает 10-20-кратное сокращение размера файла.

    Область применения

    JPEG лучше всего компрессирует полноцветные и монохромные изображения фотографического качества. Если же требуется сохранить картинку с индексной палитрой, то сначала она конвертируется в полноцветную. При компрессии методом JPEG нужно иметь в виду, что все зависит от характера изображений: гораздо меньший объем будут занимать те, где изменения цвета незначительны и нет резких цветовых переходов. JPEG применяется всюду, где нужно хранить фотоизображения: в цифровых фотоаппаратах, полиграфии (EPS DCS 2.0), немыслим без него и Интернет.

    Существует несколько разновидностей JPEG-компрессии, мы же рассмотрим только две из них, использующиеся в стандартном пакете для работы с растровыми изображениями Adobe Photoshop, — baseline и progressive . Два других способа — ariphmetic и loseless — экзотика, в силу ряда причин не получившая широкого распространения.

    Как происходит сжатие

    1. Первый этап заключается в конвертировании цветовой модели изображения (обычно RGB) в модель, где яркостная и цветовая составляющие разнесены (например, YCbCr или YUV), что позволяет оптимально подойти к выбору степеней компрессии для каждого канала (с учетом особенностей восприятия глазом). Преобразование происходит следующим образом:

    Y = 0,299xR+0,587*G+0,114xB Cb = (B-Y)/0,866/2+128 Cr = (R-Y)/0,701/2+128

    2. На следующем этапе происходит т. н. префильтрация , при которой соседние пиксели отдельно в каждом из каналов Cb и Cr группируются попарно в горизонтальном и вертикальном направлениях, а яркостный канал Y оставляется без изменений. После этого вся группа из четырех пикселов получает усредненное значение соответствующих компонент Cb и Cr. Для краткости такую схему можно обозначить как 4:1:1 (такая же форма представления принята в DRAW — окно экспорта в jpeg). С учетом того, что каждый пиксел кодируется 3 байтами (по 256 уровней для каждого из трех каналов), в результате объем данных автоматически сокращается в 2 раза (вместо 12 байт для передачи 4 пикселов достаточно передать всего 4+1+1 = 6 байт). С точки зрения математики такое преобразование приводит к существенной потере информации, но человеческий глаз потери не воспринимает, поскольку в обычных фотографических изображениях присутствует существенная избыточность.

    3. Полученная информация, прошедшая стадию первичной «очистки», отдельно в каждом канале снова группируется в блоки, но уже размером 8x8, после чего для них применяется основное сжатие — т. н. дискретное косинусное преобразование , для краткости — DCT (discrete cosine transform). В результате информация о распределении яркости пикселов преобразуется в другой вид, где она описывается распределением, основанном на частоте появления той или иной яркости пикселов. DCT имеет ряд преимуществ перед другими преобразованиями (например, перед преобразованием Фурье), обеспечивая лучшее восстановление информации.

    Вместо массива из 64 значений (8x8 пикселов) для каждого блока, из которых состоит изображение, мы получаем массив из 64 частот. Рассмотрим работу DCT на примере. Допустим, яркость пикселов в одном блоке нашего изображения имеет вид, представленный на рис. 1 слева, тогда результат преобразования будет таким, как показано справа.

    1

    Несмотря на значительную точность, некоторая потеря информации на данном этапе все же происходит — именно поэтому JPEG всегда приводит к потере качества. Основная цель преобразования — выяснить общую картину распределения крупных (на рисунке — сверху слева) и мелких (внизу справа) объектов, что пригодится потом, при устранении малозначимой информации.

    4. Следующий этап — удаление малозаметной глазу информации из блока, или квантование (quantization). Все составляющие делятся на различные коэффициенты, определяющие значимость каждой из них для качественного восстановления исходного изображения, и результат округляется до целого значения. Именно эта процедура вносит наибольшие потери качества, снижая конечный объем изображения. Высокочастотные составляющие квантуются грубо, а низкочастотные — точнее, поскольку наиболее заметны. Дабы несколько сгладить понижение качества, в канале яркости используются меньшие коэффициенты деления, чем в каналах цветности. Но чаще (это делается для ускорения расчетов) вместо специально подобранных значений берется всего одно — то, которое вводит пользователь при выборе степени компрессии.

    Вот, например, как выглядит окно Photoshop при сохранении изображения c помощью операции Save for web, где параметр Quality (вернее, производная от него) — тот самый коэффициент округления (рис. 2).

    В результате квантования получается набор составляющих, по которым исходное изображение восстанавливается с заданной точностью (рис. 3).

    4

    На рис. 4 показан результат восстановления черно-белого квадрата соответственно одной, четырьмя и пятнадцатью составляющими.

    5. После выполнения основной работы по сжатию изображения дальнейшие преобразования сводятся к второстепенным задачам: оставшиеся составляющие собираются в последовательность таким образом, чтобы сначала располагались отвечающие за крупные детали, а потом — за все более мелкие. Если посмотреть на рисунок, то движение кодировщика похоже на зигзагообразную линию. Этап так и называется — ZigZag (рис. 5).

    5

    Затем получившаяся последовательность сжимается: сначала обычным RLE, затем методом Хаффмана.

    6. И наконец, чисто техническая стадия — данные заключаются в оболочку, снабжаются заголовком, в котором указываются все параметры компрессии с тем, чтобы изображение можно было восстановить. Впрочем, иногда в заголовки не включают эту информацию, что дает дополнительный выигрыш в компрессии, однако в этом случае нужно быть уверенным, что приложение, которое будет читать файл, о них знает.

    Вот, в общем, и все преобразования. А теперь давайте подсчитаем, какая компрессия была достигнута в нашем примере. Мы получили 7 значений, по которым восстановится первоначальное изображение размером 8x8. Итак, компрессия от применения DCT-преобразования в обоих каналах цветности составила 8x8/7 ≈ 9 раз. Отведем на канал яркости не семь, а 11 коэффициентов, что даст 8x8/11 ≈ 6. Для всех трех каналов получится (9+9+6)/3=8 раз. Снижение качества при «прореживании» изображения, произошедшего на второй стадии, дает дополнительно двойной прирост (схема 4-1-1, учитывающая особенности кодирования яркостной составляющей), что даст итоговый результат — 16 раз. Это грубый подсчет, не учитывающий некоторых аспектов, но отражающий реальную картину. Чтобы получить тридцатикратное сокращение размера файла, нужно оставить всего 3-4 составляющие.

    Процесс восстановления изображения протекает в обратном порядке: сначала составляющие умножаются на значения из таблицы квантования, и получаются приблизительные коэффициенты для обратного косинусного преобразования. Чем лучшее качество выбрано при компрессии, тем степень приближения к оригинальным коэффициентам выше, а значит, изображение восстановится более точно. Остается добавить лишь одно действие: перед самым завершением внести некоторые корректировки (шум) в граничные пиксели из соседних блоков, чтобы убрать резкие перепады между ними.

    Недостатки JPEG

    1. Невозможность достичь высоких степеней сжатия за счет ограничения на размер блока (только 8x8).
    2. Блочность структуры на высоких степенях компрессии.
    3. Закругление острых углов и размывание тонких элементов в изображении.
    4. Поддерживаются только RGB-изображения (использовать JPEG для CMYK-изображений можно только в формате EPS через DCS).
    5. Изображение нельзя отобразить до тех пор, пока оно не загрузится полностью.

    С тех пор, как JPEG был утвержден в качестве стандарта, прошло уже десять лет. За это время группы исследователей предложили ряд существенных дополнений в первоначальный вариант, которые вылились в конце прошлого года в появление нового стандарта.

    JPEG2000

    С 1997 г. были начаты работы, направленные на создание универсальной системы кодирования, которая снимала бы все ограничения, накладываемые JPEG, и могла эффективно работать со всеми типами изображений: черно-белыми, в градациях серого, полноцветными и многокомпонентными, причем независимо от содержания (будут ли это фотографии, достаточно мелкий текст или даже чертежи). В его разработке принимали участие наряду с международными стандартизирующими организациями такие гранды промышленности, как Agfa, Canon, Fujifilm, Hewlett-Packard, Kodak, LuraTech, Motorola, Ricoh, Sony и др.

    Поскольку новый алгоритм претендовал на универсальный, ему дополнительно ставилась задача использования различных способов передачи данных (в реальном режиме времени и при узкой полосе пропускания), что особенно критично в мультимедийных приложениях, например, в реал-трансляциях через Интернет.

    Основные требования, предъявляемые к формату JPEG2000:

    1. Достижение повышенной по сравнению с JPEG степени компрессии.
    2. Поддержка монохромных изображений, что позволит применять его для компрессии изображений с текстом.
    3. Возможность сжатия вообще без потерь.
    4. Вывод изображений с постепенным улучшением детализации (как в progressive GIF).
    5. Использование в изображении приоритетных областей, для которых качество может устанавливаться выше, чем в остальной части изображения.
    6. Декодирование в реальном режиме времени (без задержек).

    Принцип сжатия

    В качестве основного механизма компрессии в JPEG2000, в отличие от JPEG, используется волновое (wavelet) преобразование — система фильтров, применяемых ко всему изображению. Не вдаваясь в детали компрессии, отметим лишь основные моменты.

    6
    Сначала точно так же, как и для JPEG, происходит конвертирование изображения в систему YCrCb, после чего — первичное удаление избыточной информации (путем уже известного объединения соседних пикселей в блоки 2x2). Затем все изображение делится на части одинакового размера (tile), над каждой из которых независимо от других и будут происходить дальнейшие преобразования (это снижает требования к объему памяти и вычислительным ресурсам). Далее каждый канал проходит фильтрацию низкочастотным и высокочастотным фильтрами отдельно по строкам и по рядам, в результате чего после первого прохода в каждой части формируются четыре более мелких изображения (subband). Все они несут информацию об исходном изображении, но их информативность сильно отличается (рис. 6).

    Например, изображение, полученное после низкочастотной фильтрации по строкам и рядам (вверху слева), несет наибольшее количество информации, а полученное после высокочастотной — минимальное. Информативность у изображений, полученных после НЧ-фильтрации строк и ВЧ для столбцов (и наоборот), средняя. Наиболее информативное изображение опять подвергается фильтрации, а полученные составляющие, как и при jpeg-компрессии, квантуются. Так происходит несколько раз: для сжатия без потерь цикл обычно повторяется 3 раза, с потерями — разумным компромиссом между размером, качеством и скоростью декомпрессии считается 10 итераций. В результате получается одно маленькое изображение и набор картинок с мелкими деталями, последовательно и с определенной точностью восстанавливающих его до нормального размера. Очевидно, что наибольшая степень компрессии получается на крупных изображениях, поскольку можно установить большее количество циклов.

    Практическая реализация

    С тех пор, как были заложены основы компрессии методом JPEG2000, ряд компаний разработал достаточно эффективные алгоритмы ее реализации.

    Среди крупных разработчиков ПО можно отметить Corel (кстати, она одна из первых внедрила в свои пакеты поддержку формата wi, основанного на волновых преобразованиях, за что ей честь и хвала) — все изображения, поставляемые на компакт-дисках с пакетом CorelDRAW вплоть до девятой версии, сжимались именно таким способом.

    Позже к ней подтянулась и Adobe. Часть идей, заложенных в JPEG2000, была применена разработчиками Photoshop 6 в виде продвинутых опций при сохранении изображения в формате JPEG (обычном, основанном на косинусном преобразовании). Среди них — прогрессивный JPEG (параметр Progressive в окне Save for Web). Этот алгоритм предназначен, главным образом, для систем реального времени и работает точно так же, как и прогрессивный GIF. Сначала появляется грубая копия изображения, состоящая всего из нескольких блоков большого размера, а со временем, когда подгружаются остальные данные, структура начинает просматриваться все четче, пока, наконец, конечное изображение не восстановится полностью. В отличие от GIF, такой алгоритм создает большую нагрузку на просмотрщик, поскольку ему придется полностью выполнять весь цикл преобразований для каждой передаваемой версии.

    Из других дополнений отметим включение в файл нескольких JPEG-сжатых изображений с разной степенью компрессии, разрешением и даже цветовыми моделями. Соответственно, в Photoshop 6 появилась возможность выделять в изображении отдельные области и применять для них другие установки компрессии (Region-Of-Interest , впервые такой механизм был предложен еще в 1995 г.), используя более низкие значения в таблице квантования. Для этого задается требуемая область (например, в виде нового канала в изображении) и нажимается пиктограмма маски возле пункта Quality (Качество). В появившемся окне можно экспериментировать с изображением, передвигая ползунки, — готовый результат отображается на экране, позволяя быстро находить необходимый компромисс между качеством и размером.

    Специализированные конверторы и просмотрщики

    Поскольку стандартом не оговариваются конкретные реализации методов компрессии/декомпрессии, это дает простор сторонним разработчикам алгоритмов сжатия. В самом деле, можно использовать либо упрощенный алгоритм волнового преобразования и тем самым ускорить процесс компрессии или же, наоборот, применить более сложный и, соответственно, требующий больших системных ресурсов.

    Специализированные решения от других компаний доступны в виде коммерческих разработок. Одни реализованы в виде отдельных программ (JPEG 2000 разработки Aware), другие — в виде дополнительных модулей для наиболее распространенных растровых редакторов (ImagePress JPEG2000 разработки Pegasus Imaging и модуль LEAD JPEG2000 от LEAD Technologies). На их фоне выделяется компания LuraTech, давно занимающаяся этим вопросом. Она продвигает свою технологию LuraWave в самодостаточном продукте LuraWave SmartCompress (доступна уже третья версия) и предлагает модули для Photoshop, Paintshop, Photopaint. Отличительная особенность — более высокая скорость работы (практически мгновенное преобразование) даже с картинками размером в несколько мегабайт. Соответственно и цена этого модуля самая высокая — 79 долл.

    Чтобы просматривать JPEG2000-изображения браузерами, необходимо установить специальный модуль-просмотрщик (все разработчики предлагают его бесплатно). Вставка изображения в html-документ, как и любого plug-in, сводится к использованию конструкции EMBED (с дополнительными параметрами). Например, означает, что будет использоваться прогрессивный метод переда- чи изображения. То есть в нашем примере (файл размером 139 Кбайт) сначала передаются только 250 байт, на основании которых будет построено грубое изображение, затем, после дозагрузки 500 байт, изображение обновляется (так продолжается до достижения значения LIMIT).

    Если вы захотите получить более качественное изображение, нужно выбрать пункт Improve из меню, всплывающего по правой кнопке (рис. 9). За четыре докачки все изображение будет загружено полностью.

    9

    Выводы

    Итак, JPEG2000 объективно показывает лучшие результаты, чем JPEG только на высоких степенях сжатия. При компрессии в 10-20 раз особой разницы не заметно. Сможет ли он вытеснить или просто составить конкуренцию широко распространенному формату? В ближайшее время — вряд ли, в большинстве случаев соотношение качество/размер, обеспечиваемое JPEG, вполне приемлемо. А те 10-20% дополнительной компрессии, которые дает JPEG2000 при визуально одинаковом качестве, вряд ли приведут к росту его популярности.

    Зато к новому формату проявляют пристальный интерес компании-производители цифро- вых камер, поскольку размеры светочувствительных матриц с каждым годом неуклонно увеличиваются, и помещать изображения в память становится все труднее. И вот тогда новый формат получит большее распространение, и кто знает, возможно, через какое-то время JPEG2000 сравняется с JPEG. Во всяком случае, Analog Micro Devices недавно выпустила специализированный чип, в котором компрессия/декомпрессия по новой технологии реализованы на аппаратном уровне, а министерство обороны США уже сейчас активно использует новый формат для записи фотоснимков, полученных со спутников-шпионов.

    Факты и домыслы

    1. JPEG теряет качество при открытии и повторном сохранении файла.

    Неправда. Качество теряется только тогда, когда выбирается степень компрессии, меньшая, чем та, с которой изображение было сохранено.

    2. JPEG теряет качество при редактировании файла.

    Правда. При сохранении измененного файла все преобразования выполняются вновь — поэтому избегайте частого редактирования изображений. Это относится только к случаю, когда файл закрывается: если же файл остается открытым, причин для беспокойства нет.

    3. Результат компрессии с одинаковыми параметрами в разных программах будет одинаков.

    Неправда. Разные программы по-разному трактуют вводимые пользователем значения. Например, в одной программе указывается качество сохраняемого изображения (как, например, в Photoshop), в другой — степень его компрессии (обратная величина).

    4. При установке максимального качества изображение сохраняется без каких-либо потерь качества.

    Неправда. JPEG сжимает с потерями всегда. Но установка, например, 90% качества вместо 100% дает сокращение размера файла большее, чем воспринимаемое глазом ухудшение качества.

    5. Любой файл JPEG можно открыть в любом редакторе, понимающем формат JPEG.

    Неправда. Такую разновидность JPEG, как прогрессивный (progressive JPEG), некоторые редакторы не понимают.

    6. JPEG не поддерживает прозрачность.

    Правда. Иногда может казаться, что какая-то часть изображения прозрачна, но на самом деле ее цвет просто подобран так, чтобы он совпадал с цветом фона в html-странице.

    7. JPEG сжимает лучше, чем GIF.

    Неправда. У них разная область применения. В общем случае, типичная «гифовская» картинка после конвертирования в JPEG будет иметь больший объем.

    JPEG2000 против JPEG

    7
    1. При двадцати-тридцатикратном сжатии JPEG2000 и JPEG дают приблизительно одинаковое качество (кстати говоря, Photoshop не может сжать обычную фотографию больше этого предела).

    2. При большем сжатии качество JPEG2000 существенно выше, чем у JPEG, что позволяет без особых потерь сжимать до 50 раз, а с некоторыми потерями (речь идет об изображениях для Интернет) — до 100 и даже до 200.

    3. При больших степенях компрессии в тех областях, где происходит плавное изменение цвета, изображение не приобретает характерную для простого JPEG блочную структуру. JPEG2000 также несколько размазывает и закругляет острые контуры — см. фотографии (рис. 7 и 8).

    На нем представлены результаты компрессии тестового файла с разными степенями компрессии (слева — сохраненные в Photoshop в формате JPG, справа — в формате JPEG2000). Для изображения на рис. 7 были выбраны степени компрессии 20, 40, 70 и 145 (их можно явно указывать при сохранении в JPEG2000), степень сжатия JPG выбиралась из того расчета, чтобы размер файла был таким же, как после сжатия по JPEG2000. Как говорится, результаты налицо. Для чистоты был проведен второй эксперимент на изображении с более четкими деталями (со степенями компрессии 10, 20, 40 и 80). Преимущество опять же на стороне JPEG2000 (рис. 8).

    8

    4. Поскольку, по сути, в одном JPEG2000-файле хранятся копии с разным разрешени

    ем, для тех, кто делает галереи изображений в Интернете, отпадает необходимость создавать для них thumbnails.

    5. Особый интерес представляет компрессия без искажений (режим loseless). Так, тестовый файл при LZW-сжатии из Photoshop занял 827 Кбайт, а сжатый JPEG2000 — 473 Кбайт.

    6. По сравнению с JPEG его более продвинутый тезка потребляет значительно больше системных ресурсов. Но существенно возросшая за последние пару лет мощь компьютеров позволяет успешно решать задачи сжатия изображений новым методом.

    7. Отсутствие поддержки JPEG2000 в браузерах. Чтобы просматривать такие изображения, нужно скачать довольно большой дополнительный модуль (1,2 Мбайта).

    8. Отсутствие бесплатного ПО для сохранения изображений в новом формате.

    Журналов в свободном доступе.

    На ту же тему: