Тарифы Услуги Сим-карты

Командный интерпретатор. Руководство пользователя. Командная строка

Чтобы обеспечить взаимодействие пользователя с операционной системой и с прикладными программами необходим интерфейс: система передачи команд пользователя операционной системе и ответов системы обратно пользователю. Такое взаимодействие представляет собой «диалог» пользователя с компьютером на специальном языке, будь то язык, использующий знаки, похожие на слова и высказывания естественного языка, или язык изображений. На сегодня известны две принципиальные возможности организации интерфейса: графический интерфейс и командная строка.

Командная строка - приглашение оболочки, обозначающее готовность системы принимать команду пользователя, - в наиболее явной форме демонстрирует идею диалога. На каждую введенную команду пользователь получает ответ от системы: либо очередное приглашение, обозначающее, что команда выполнена и можно вводить следующую, либо сообщение об ошибке, представляющее собой высказывание системы о произошедших в ней событиях, адресованное пользователю. При работе в операционной среде с графическим интерфейсом происходящий диалог пользователя с системой не столь очевиден, хотя с точки зрения системы клик мышью в определенной области на экране аналогичен команде, введенной с клавиатуры, а ответ системы пользователю может быть представлен в виде диалогового окна.

При работе с командной строкой для организации интерфейса используются специальные программы - командные интерпретаторы. Они принимают от пользователя выдаваемые им команды в виде строк текста, содержащих имена программы и параметры, с которыми эти программы следует выполнить, производят разбор полученных строк, запускают необходимые программы и передают пользователю их вывод - также строки текста. Всё взаимодействие пользователя с системой происходит через командный интерпретатор, поэтому его часто называют оболочкой (shell). Для выполнения типовых действий последовательности команд оказываются одинаковыми. Такие последовательности команд можно записать в текстовый файл и далее передать этот текстовый файл командному интерпретатору для выполнения. Такие текстовые файлы называются скриптами. Для запуска они должны иметь соответствующие права (флаг "x"). Командные интерпретаторы поддерживают условное выполнение команд (структуры if-then-else), циклы, создание и вызовы подпрограмм и т.п. Язык командного интерпретатора исключительно мощный и позволяет автоматизировать практически любую задачу в системе. Например, действия при загрузке системы осуществляются скриптами командного интерпретатора - начиная от /etc/rc.d/rc.sysinit, который, в свою очередь, вызывает большое количество других скриптов.

В системах *nix, в соответствии с их модульным построением, доступны несколько командных интерпретаторов. В-основном сейчас используется интерпретатор bash (/bin/bash).

Команды операционной системы представляют из себя небольшие программы, расположенные в каталогах /bin, /usr/bin, /sbin, /usr/sbin. В дальнейшем, говоря о командах, мы будем понимать под этим именно указанные программы.

Общий формат вызова команды выглядит следующим образом:

$ command -f --flag --key=parameter argument1 agrument2 ...

Здесь "$" - это приглашение операционной системы к вводу команды. Для обычных пользователей оно имеет вид "$", для суперпользователя (root) - "#". В дальнейшем для команд, которые требуют привилегий root, будет использоваться запись вида "# command".

command - имя команды. Для часто использующихся команд имена короткие, состоящие из 2-3 букв.

После имени команды, при необходимости, указываются ключи. Ключ - параметр команды, который влияет на результат её выполнения. Часто использующиеся ключи - короткие, односимвольные; для требующихся реже длинных ключей используются слова или сокращения. Короткие ключи начинаются с символа "-", длинные - с двух символов "-". Короткие ключи часто дублируются длинными - для повышения читабельности скриптов. После ключей может допускаться указание дополнительных параметров, для длинных ключей такие параметры принято записывать через знак "=". Несколько односимвольных ключей разрешается объединять вместе: например, вместо "$ ls -l -a" можно записать "$ ls -la".

Порядок ключей, как правило, не важен.

После всех ключей следуют аргументы команды. Аргументы чаще всего представляют из себя пути к файлам или каталогам. Возможно использовать аргументы, начинающиеся со знака "-". В этом случае от ключей они отделяются двумя символами "-":

$ touch -- -file-with-

Команды могут использовать различные ключи и параметры. Запоминать все возможные комбинации формата вызова каждой программы невозможно и бессмысленно. Поэтому в системе доступны описания и подсказки по использованию практически каждой утилиты и программы.

Обычно программы поддерживают несколько стандартных ключей. По ключу "-h" или "--help" выдаётся краткая справка о программе. По ключу "-v" или "--version" - её версия. Если краткой справки не достаточно, то можно вызвать описание программы в справочной системе. Для работы со справкой используется команда man (сокращение от "manual" - руководство). Команда man в качестве аргумента принимает имя команды или файла конфигурации, ищет и выводит на экран страницу справочного руководства. В справке, выдаваемой командой man, содержится информация о формате вызова программы, поддерживаемых ей ключах и параметрах, информация об авторах и лицензии программы, в ряде случаев - примеры использования, ссылки на сайты разработчиков с дополнительной документацией.

Для просмотра страниц руководства, не помещающихся на экране, следует использовать прокрутку клавишами перемещения курсором, "Page Up" и "Page Down". Пробел перемещает руководство на страницу вперёд. Для выхода из man и продолжения работы с системой следует нажать клавишу "q" (quit).

Часть программ, помимо руководств в формате "man", также имеют и более пространную документацию в формате "info" - с вызовом её через одноимённую утилиту.

В отличии от встроенной системы подсказки программ в операционной системе Windows, руководства man и info содержат полную подробную техническую информацию о работе команд.

По умолчанию команды пакетного файла перед исполнением выводятся на экран, что выглядит не очень эстетично. С помощью команды ECHO OFF можно отключить дублирование команд, идущих после нее (сама команда ECHO OFF при этом все же дублируется). Например,

REM Следующие две команды будут дублироваться на экране … DIR C:\ ECHO OFF REM А остальные уже не будут DIR D:\

Для восстановления режима дублирования используется команда ECHO ON. Кроме этого, можно отключить дублирование любой отдельной строки в командном файле, написав в начале этой строки символ @, например:

ECHO ON REM Команда DIR C:\ дублируется на экране DIR C:\ REM А команда DIR D:\ - нет @DIR D:\

Таким образом, если поставить в самое начало файла команду

@ECHO OFF

то это решит все проблемы с дублированием команд.

В пакетном файле можно выводить на экран строки с сообщениями. Делается это с помощью команды

ECHO сообщение

Например,

@ECHO OFF ​ECHO Привет!

Команда ECHO. (точка должна следовать непосредственно за словом "ECHO") выводит на экран пустую строку.

Часто бывает удобно для просмотра сообщений, выводимых из пакетного файла, предварительно полностью очистить экран командой CLS.

Используя механизм перенаправления ввода/вывода (символы > и >>), можно направить сообщения, выводимые командой ECHO, в определенный текстовый файл. Например:

@ECHO OFF ECHO Привет! > hi.txt ECHO Пока! >> hi.txt

С помощью такого метода можно, скажем, заполнять файлы-протоколы с отчетом о произведенных действиях. Например:

@ECHO OFF REM Попытка копирования XCOPY C:\PROGRAMS D:\PROGRAMS /s REM Добавление сообщения в файл report.txt в случае REM удачного завершения копирования IF NOT ERRORLEVEL 1 ECHO Успешное копирование >> report.txt

Использование параметров командной строки

При запуске пакетных файлов в командной строке можно указывать произвольное число параметров, значения которых можно использовать внутри файла. Это позволяет, например, применять один и тот же командный файл для выполнения команд с различными параметрами.

Для доступа из командного файла к параметрам командной строки применяются символы %0, %1, …, %9 или %*. При этом вместо %0 подставляется имя выполняемого пакетного файла, вместо %1, %2, …, %9 - значения первых девяти параметров командной строки соответственно, а вместо %* - все аргументы. Если в командной строке при вызове пакетного файла задано меньше девяти параметров, то "лишние" переменные из %1 – %9 замещаются пустыми строками. Рассмотрим следующий пример. Пусть имеется командный файл copier.bat следующего содержания:

@ECHO OFF CLS ECHO Файл %0 копирует каталог %1 в %2 XCOPY %1 %2 /S

Если запустить его из командной строки с двумя параметрами, например

Copier.bat C:\Programs D:\Backup

то на экран выведется сообщение

Файл copier.bat копирует каталог C:\Programs в D:\Backup

и произойдет копирование каталога C:\Programs со всеми его подкаталогами в D:\Backup.

При необходимости можно использовать более девяти параметров командной строки. Это достигается с помощью команды SHIFT, которая изменяет значения замещаемых параметров с %0 по %9, копируя каждый параметр в предыдущий, то есть значение %1 копируется в %0, значение %2 – в %1 и т.д. Замещаемому параметру %9 присваивается значение параметра, следующего в командной строке за старым значением %9. Если же такой параметр не задан, то новое значение %9 - пустая строка.

Рассмотрим пример. Пусть командный файл my.bat вызван из командной строки следующим образом:

My.bat p1 p2 p3

Тогда %0=my.bat, %1=p1, %2=p2, %3=p3, параметры %4 – %9 являются пустыми строками. После выполнения команды SHIFT значения замещаемых параметров изменятся следующим образом: %0=p1, %1=p2, %2=p3, параметры %3 – %9 – пустые строки.

При включении расширенной обработки команд SHIFT поддерживает ключ /n, задающий начало сдвига параметров с номера n, где n может быть числом от 0 до 9.
Например, в следующей команде:

SHIFT /2

параметр %2 заменяется на %3, %3 на %4 и т.д., а параметры %0 и %1 остаются без изменений.

Команда, обратная SHIFT (обратный сдвиг), отсутствует. После выполнения SHIFT уже нельзя восстановить параметр (%0), который был первым перед сдвигом. Если в командной строке задано больше десяти параметров, то команду SHIFT можно использовать несколько раз.
В командных файлах имеются некоторые возможности синтаксического анализа заменяемых параметров. Для параметра с номером n (%n) допустимы синтаксические конструкции (операторы), представленные в следующей таблице:

Таблица 2.1. Операторы для заменяемых параметров

Операторы

Описание

Переменная %n расширяется до полного имени файла

Из переменной %n выделяется только имя диска

Из переменной %n выделяется только путь к файлу

Из переменной %n выделяется только имя файла

Из переменной %n выделяется расширение имени файла

Значение операторов N и X для переменной %n изменяется так, что они работают с кратким именем файла

Проводится поиск по каталогам, заданным в переменной среды PATH, и переменная %n заменяется на полное имя первого найденного файла. Если переменная PATH не определена или в результате поиска не найден ни один файл, эта конструкция заменяется на пустую строку. Естественно, здесь переменную PATH можно заменить на любое другое допустимое значение

Данные синтаксические конструкции можно объединять друг с другом, например:

%~DPn - из переменной %n выделяется имя диска и путь,
%~NXn - из переменной %n выделяется имя файла и расширение.

Рассмотрим следующий пример. Пусть мы находимся в каталоге C:\TEXT и запускаем пакетный файл с параметром Рассказ.doc (%1=Рассказ.doc). Тогда применение операторов, описанных в таблице выше, к параметру %1 даст следующие результаты:

%~F1=C:\TEXT\Рассказ.doc %~D1=C: %~P1=\TEXT\ %~N1=Рассказ %~X1=.doc %DP1=C:\TEXT\ %NX1=Рассказ.doc

1. (выберите неправильный ответ) Базовое регулярное выражение включает в себя понятие

2. (выберите неправильный ответ) Как на время приостановить слишком объёмистый вывод программы (например, "ls - r /")?

3. (выберите неправильный ответ) Как остановить запущенную без параметров программу "cat"?

4. (выберите неправильный ответ) Процесс в UNIX-системе

5. (выберите неправильный ответ) Соблюдение принципов организации процедурных систем помогает

6. (выберите неправильный ответ) Утилита ed - это

7. (выберите неправильный ответ) Чем отличается поток управления от потока данных?

8. PID (идентификатор процесса) - это

9. The X window System - это

10. UNIX - это

11. X11R6 - это

12. XFree86 - это

13. X-клиент - это

14. X-сервер - это

15. Аббревиативность команд в vi приводит к тому, что

16. Активный процесс отличается от фонового тем, что

17. Без соблюдения какого принципа невозможна полноценная проективная система?

18. Больше всего в vi

19. Большинство функций пользовательского интерфейса в Unix-системах берёт на себя

20. В shell запись в произвольный файл и чтение оттуда реализованы в виде

21. В UNIX-системах

22. В графической среде X11:

23. В графической среде X11:

24. В графической среде X11:

25. В каком случае оператор if в shell посчитает условие выполненным?

26. В каталогах rc1.d, rc2.d и т. п. находятся

27. В качестве кого выступает пользователь проективной системы?

28. В качестве кого выступает пользователь процедурной системы?

29. В команде ls a b "c d" утилита ls получит

30. В основе проективной системы лежит требование

31. В основе процедурной системы лежит требование

32. В редакторе vi три режима работы с текстом:

33. В редакторе vim сделаны усовершенствования для более удобного редактирования

34. В странице руководства обязаны присутствовать поля

35. В строке "Qbab*cdecW" регулярному выражению "(a|b).*c" соответствует подстрока

36. В строке, набираемой в ответ на "подсказку" shell первое слово - это чаще всего

37. В т. н. новой BSD-схеме начальной загрузки (FreeBSD5), использующей принцип ".d"

38. В формате ls представлено содержимое каталога. Кто, помимо суперпользователя, имеет возможность удалить файл, содержащийся в нём?

39. В формате ls представлено содержимое каталога. Кто, помимо суперпользователя, имеет возможность удалить файл, содержащийся в нём?

40. В формате ls представлено содержимое каталога. Кто, помимо суперпользователя, имеет возможность удалить файл, содержащийся в нём?

41. В функции операционной среды входит

42. В функции операционной среды входит

43. В функции операционной среды входит

44. В чём заключается "проблема управляющего ввода" в текстовых редакторах?

45. В чём причина разделения прикладной и инструментальной областей при решении задачи?

46. В чём разница между операционной системой и операционной средой?

47. В чём разница между терминами "X-терминал" и "xterm"

48. В чём смысл аппаратной поддержки контекста задачи?

49. В чём смысл различения системного и пользовательского наполнения ОС?

50. Вертикальные информационные потоки имеют дело с

51. Все страницы руководства

52. Выберите пункт, в котором упомянуты только важнейшие поля руководства

53. Выберите пункт, в котором упомянуты только важнейшие поля руководства

54. Выберите пункт, в котором упомянуты только важнейшие поля руководства

55. Выберите пункт, в котором упомянуты только основные источники информации о системе

56. Выберите пункт, в котором упомянуты только основные источники информации о системе

57. Выберите пункт, в котором упомянуты только основные источники информации о системе

58. Выберите пункт, в котором этапы решения задачи расположены в оптимальном порядке

59. Выберите пункт, подпункты которого соответствуют трём последовательным уровням досистемной загрузки

60. Выберите пункт, подпункты которого соответствуют трём последовательным уровням досистемной загрузки

61. Выберите пункт, подпункты которого соответствуют трём последовательным уровням досистемной загрузки

62. Выберите пункт, содержащий только принципы организации проективных систем

63. Выберите пункт, содержащий только принципы организации проективных систем

64. Выберите пункт, содержащий только принципы организации проективных систем

65. Выберите пункт, содержащий только принципы организации процедурных систем

66. Выберите пункт, содержащий только принципы организации процедурных систем

67. Выберите пункт, содержащий только принципы организации процедурных систем

68. Главная область применения текстового редактора в UNIX

69. Главный недостаток "линейной" схемы начальной загрузки (т. н. старая BSD-схема, FreeBSD4)

70. Гнёзда UNIX

71. Гнездовая команда в vi может состоять из

72. Действительный субъект - это

73. Действительный субъект в UNIX однозначно определяется

74. Демоны в типичной UNIX-системе

75. Диаграмма достижимости описывает

76. Диалог человека и машины в процедурной системе чаще всего строится на основе

77. Для комфортного освоения редактора vim необходимо

78. Для определения прав доступа субъекта к файлу, системе, вдобавок к атрибутам файла, необходимо знать

79. Для традиционного механизма виртуальной памяти справедливо утверждение:

80. Для управления UNIX-системой необходимо

81. Для чего нужен "t-бит" каталога?

82. Доверенный субъект

83. Документацию по UNIX-системе

84. Документация в виде info-страниц

85. Дополнительный раздел диска (extended partition) - это

87. Достраивание - это

88. Если в текущем каталоге есть по крайней мере файл с именем "a", то по команде ls a* утилита ls получит

90. Задача операционной среды:

91. Задачи в очереди UNIX-процессов

92. Закавычивание необходимо для того, чтобы

93. Знание каких областей необходимо опытному пользователю проективной системы?

94. Знание каких областей необходимо опытному пользователю процедурной системы?

95. Имеет ли смысл хранить сложные команды vi в виде комментариев к тексту?

96. Имя макрокоманды в vi - это

98. Интерфейс UNIX-системы

99. Интерфейс UNIX-системы

100. Интерфейс командной строки появился вследствие

101. Информационный поток в модели надёжности - это

102. Информационный поток в модели секретности - это

103. Как много стандартных основных разделов можно завести на диске IBM-совместимого компьютера?

104. Как много стандартных разделов можно завести на диске IBM-совместимого компьютера?

105. Как много стандартных разделов помещается в одной таблице разбиения диска (HDPT) IBM-совместимого компьютера?

107. Как остановить "зависшую" программу?

108. Какая из строк "abcdf" "abcdbcdf" "abcdef" "af" "adbdf" "acf" соответствуют РВ "a(bcd)*f"

109. Какая из строк "abcdf" "abcdbcdf" "abcdef" "af" "adbdf" "acf" соответствуют РВ "af"

110. Какая из строк соответствуют РВ "m(1.3|)+"

111. Какая из строк соответствуют РВ "n(|x-z)+"

112. Какая из строк соответствуют РВ "o|+"

113. Какая область применения не характерна для процедурных систем?

114. Какой принцип проективной системы соблюдается в vi строже всего?

115. Какой процесс связан с каждым терминалом немедленно по окончании загрузки?

116. Какой тип человеко-машинных систем требует от пользователя знания инструментальной области?

117. Какому из подходов к разработке ОС отвечает метафора "рабочего стола"?

118. Каталог /etc в типичной UNIX-системе применяется для хранения

119. Каталог /usr в типичной UNIX-системе применяется для хранения

120. Каталог /var в типичной UNIX-системе применяется для хранения

121. Контекстный адрес задаёт

122. Кто чаще всего запускает команду "chown"?

123. Легенда в процедурной системе - это

124. Лидером сеанса называется

125. Метки текста

126. Модель надёжности вводит запрет

127. Модель секретности вводит запрет

128. Модули в типичной UNIX-системе

129. Можно ли записать данные в файл, имеющий атрибуты "r--r--r--"?

130. Можно ли реализовать функцию звукового сопровождение команд?

131. Можно ли реализовать функцию перемещения по гипертекстовым ссылкам в формате HTML?

132. Можно ли реализовать функцию редактирования электронных таблиц?

133. Можно ли удалить чужой файл из своего каталога?

134. Назначение поля NAME:

135. Назначение поля SEE ALSO

136. Назначение поля SYNOPSIS:

137. Назовите инструментальную и прикладную область при решении следующей задачи: создание железнодорожного расписания

138. Назовите инструментальную и прикладную область при решении следующей задачи: создание интернет-казино

139. Назовите инструментальную и прикладную область при решении следующей задачи: проектирование корпуса инвалидной коляски

140. Настройки редактора vi можно изменить

141. Номинальный субъект - это

142. Номинальный субъект в UNIX однозначно определяется

143. Обратная задача проективной системы - это

144. Одно и то же регулярное выражение можно использовать во всех утилитах, работающих с РВ

145. Окружение - это

146. Операция "|" в shell

147. Основное направление развития проективных систем

148. Основное направление развития процедурных систем

149. Основные задачи ядра системы

150. Основные команды работы с файлами:

151. Основные функции shell

152. Особенность графических ресурсов в том, что они

153. Отсроченная передача данных возможна

154. Пакеты в типичной UNIX-системе

155. Перемещением, изменением размера и внешнего вида окон в X занимается

156. По возможностям редактор vim

157. Подстановка в shell - это

158. Поиск нужной страницы руководства происходит

159. Пользователь какого вида систем чаще выступает в роли посредника между машиной и заказчиком?

160. Понятие "терминал" может обозначать

161. Понятие "терминал" может обозначать

162. Понятие "терминал" может обозначать

163. Понятия "системная утилита" и "пользовательская утилита" в UNIX

164. Почему "login" может запустить shell "от лица" любого пользователя?

165. Правило "левый-длинный" говорит о том, что

166. Предписание в процедурной системе - это

167. Предписание в процедурной системе - это

168. При нажатии клавиши "c" в командном режиме vi произойдёт

169. При нажатии клавиши "d" в командном режиме vi произойдёт

170. При нажатии клавиши "y" в командном режиме vi произойдёт

171. При освоении проективной системы пользователю придётся

172. При редактировании командной строки и истории главное - это

173. При типичном использовании шаблона

174. Принцип гарантированных навыков требует, чтобы

175. Принцип информационной открытости требует, чтобы

176. Принцип минимизации затрат требует, чтобы

177. Принцип ограниченной осведомлённости требует, чтобы

178. Принцип перекрытия процедур требует, чтобы

179. Принцип умопостижимости контекста требует, чтобы

180. Причина частого применения регулярных выражений в UNIX

181. Проект в проективной системе - это

182. Проект в проективной системе - это набор данных, однозначно описывающий

183. Профиль (profile) командного интерпретатора - это

184. Процедура в процедурной системе - это

185. Прямое построение проекта означает

186. Псевдотерминал - это

187. Разделение времени - это

188. Разделение ресурсов - это

189. Расширенное регулярное выражение включает в себя понятие

190. Регулярное выражение состоит из

191. С точки зрения UNIX, сценарий - это

192. Сигнал - это

194. Сколько _способов_ доступа в файловой системе UNIX?

195. Сколько X-серверов может быть зарегистрировано на одном компьютере?

196. Сколько карманов у редактора vi?

197. Сложнее всего в UNIX-системе соблюсти

198. Создатели UNIX-систем рассчитывали

199. Стандартные каталоги UNIX подразделяются

200. Стартовый виртуальный диск (initrd) - это

201. Субъект-объектная модель на основе ACL

202. Субъект-объектная модель прав доступа используется для

203. Субъект-субъектная модель прав доступа используется для

204. Субъект-субъектная модель с множественным субъектом

205. Термин "стандартный ввод программы" обозначает

206. Термин "стандартный вывод ошибок программы" обозначает

207. Термин "стандартный вывод программы" обозначает

208. Термин "устройство" обозначает

209. Терминальная линия - это

210. Типичные командные интерпретаторы UNIX

211. Трёхуровневая схема позволяет

212. Укажите область применения, не характерную для проективных систем

213. Управление сеансами доступа используется для

214. Уровни выполнения - это

215. Утилита ed - это

216. Утилита ex - это

217. Утилита sed - это

218. Утилита vi - это

219. Файловая система - это

220. Фильтром в UNIX-системах называется

221. Фильтром в UNIX-системах называется

222. Фильтром в UNIX-системах называется

223. Функцию менеджера ресурсов в UNIX выполняет

224. Чего нельзя сделать в схеме загрузки FreeBSD?

225. Чем отличаются счётные и обменные задачи?

227. Число 11 в имени X11 - это

228. Что _однозначно_ определяет пользователя в UNIX?

229. Что делает команда mount?

230. Что находится в каталоге /etc/init. d в Linux-системе?

231. Что находится в каталоге /etc/rc3.d в Linux-системе?

232. Что не поддерживается в редакторе vim?

233. Что не поддерживается в редакторе vim?

234. Что не поддерживается в редакторе vim?

235. Что не характерно для командного интерпретатора?

236. Что нельзя сделать в схеме загрузки LILO?

237. Что полностью реализовано в UNIX?

238. Что такое "виртуальная память"?

239. Что такое "контекст задачи"?

240. Что такое "псевдопараллелизм"?

241. Что такое "псевдопользователь"?

242. Что такое инструментальная область человеческой деятельности?

243. Что такое прикладная область человеческой деятельности

244. Что такое человеко-машинная система?

245. Что характерно для командного интерпретатора?

246. Что характерно для командного интерпретатора?

247. Экранный редактор vi

248. Этапы процедуры трёхуровневой загрузки:

Developer Project предлагает поддержку при сдаче экзаменов учебных курсов Интернет-университета информационных технологий INTUIT (ИНТУИТ). Мы ответили на экзаменационные вопросы 380 курсов INTUIT (ИНТУИТ) , всего вопросов, ответов (некоторые вопросы курсов INTUIT имеют несколько правильных ответов). Текущий каталог ответов на экзаменационные вопросы курсов ИНТУИТ опубликован на сайте объединения Developer Project по адресу: http://www. dp5.su/

Подтверждения правильности ответов можно найти в разделе «ГАЛЕРЕЯ», верхнее меню, там опубликованы результаты сдачи экзаменов по 100 курсам (удостоверения, сертификаты и приложения с оценками).

Болеевопросов по 70 курсам и ответы на них, опубликованы на сайте http://www. dp5.su/, и доступны зарегистрированным пользователям. По остальным экзаменационным вопросам курсов ИНТУИТ мы оказываем платные услуги (см. вкладку верхнего меню «ЗАКАЗАТЬ УСЛУГУ». Условия поддержки и помощи при сдаче экзаменов по учебным программам ИНТУИТ опубликованы по адресу: http://www. dp5.su/

Примечания:

- ошибки в текстах вопросов являются оригинальными (ошибки ИНТУИТ) и не исправляются нами по следующей причине - ответы легче подбирать на вопросы со специфическими ошибками в текстах;

- часть вопросов могла не войти в настоящий перечень, т. к. они представлены в графической форме. В перечне возможны неточности формулировок вопросов, что связано с дефектами распознавания графики, а так же коррекцией со стороны разработчиков курсов.

Оболочкой (shell) в системеUNIXназывают механизм взаимодействия между пользователями и системой. По сути дела, это интерпретатор команд, который считывает набираемые пользователем строки и запускает выполнение запрошен­ных системных функций. Полный командный язык, интерпретируемый оболоч­кой, богат по возможностям и достаточно сложен, однако большинство команд просты в использовании и запомнить их не составляет труда.

Командная строка состоит из имени команды (то есть имени выполняемого фай­ла), за которым следует список аргументов, разделённых пробелами. Оболочка разбивает командную строку на компоненты. Указанный в команде файл загружается, и ему обеспечивается доступ к заданным в команде аргументам.

Любой командный язык семейства shellфактически состоит из трёх частей:

 служебных конструкций, позволяющих манипулировать с текстовыми строками и строить сложные команды на основе простых команд;

 встроенных команд, выполняемых непосредственно интерпретатором команд­ного языка;

 команд, представляемых отдельными выполняемыми файлами.

В свою очередь, набор команд последнего вида включает стандартные команды (системные утилиты, такие как vi,ccи т. д.) и команды, созданные пользователями системы. Для того чтобы выполняемый файл, разработанный пользовате­лем ОСUNIX, можно было запускать как командуshell, достаточно определить в одном из исходных файлов функцию с именемmain(имяmainдолжно быть глобальным, то есть перед ним не должно указываться ключевое словоstatic). Если употребить в качестве имени команды имя такого выполняемого файла, команд­ный интерпретатор создаст новый процесс и запустит в нём указанную выпол­няемую программу, начиная с вызова функцииmain.

Тело функции main, вообще говоря, может быть произвольным (для интерпрета­тора существенно только наличие входной точки в программу с именемmain), но для того, чтобы создать команду, которой можно задавать параметры, нужно придерживаться некоторых стандартных правил. В этом случае каждая функцияmainдолжна определяться с двумя параметрами –argcиargv. После вызова ко­манды параметруargcбудет соответствовать число символьных строк, указан­ных в качестве аргументов вызова команды, аargv– массив указателей на пе­ременные, содержащие эти строки. При этом имя самой команды составляет первую строку аргументов (то есть после вызова значениеargcвсегда больше или равно 1). Код функцииmainдолжен проанализировать допустимость задан­ного значенияargcи соответствующим образом обработать заданные текстовые строки.

Например, следующий текст на языке С может быть использован для создания команды, которая выводит на экран текстовую строку, заданную в качестве её аргумента:

#include

main(argc, argv)

printf(“usage: %s your-text\n”, argv);

printf(“%s\n”, argv);

Процессы

Процесс в ОС UNIXпонимается в классическом смысле этого термина, то есть как программа, выполняемая в собственном виртуальном адресном пространст­ве. Когда пользователь входит в систему, автоматически создается процесс, в ко­тором выполняется программа командного интерпретатора. Если командному интерпретатору встречается команда, соответствующая выполняемому файлу, то он создает новый процесс и запускает в нём соответствующую программу, начи­ная с функцииmain. Эта запущенная программа, в свою очередь, может создать процесс и запустить в нём другую программу (она тоже должна содержать функ­циюmain) и т. д.

Для образования нового процесса и запуска в нём программы используются два системных вызова API–fork() и ехес(имя_выполняемого_файла). Системный вызовforkприводит к созданию нового адресного пространства, состояние которого абсолютно идентично состоянию адресного пространства основного процесса (то есть в нём содержатся те же программы и данные). Для дочернего процесса заво­дятся копии всех сегментов данных.

Другими словами, сразу после выполнения системного вызова forkосновной (родительский) и порожденный процессы являются абсолютными близнецами;

управление и в том и в другом находится в точке, непосредственно следующей за вызовом fork. Чтобы программа могла разобраться, в каком процессе она те­перь работает – в основном или порождённом, функцияforkвозвращает разные значения: 0 в порождённом процессе и целое положительное число (идентифи­катор порождённого процесса – так называемыйPID) в основном процессе.

Теперь, если мы хотим запустить новую программу в порождённом процессе, нужно обратиться к системному вызову ехес, указав в качестве аргументов вызо­ва имя файла, содержащего новую выполняемую программу, и, возможно, одну или несколько текстовых строк, которые будут переданы в качестве аргументов функции mainновой программы. Выполнение системного вызова ехес приводит к тому, что в адресное пространство порожденного процесса загружается но­вая выполняемая программа и запускается с адреса, соответствующего входу в функциюmain. Другими словами, это приводит к замене текущего программно­го сегмента и текущего сегмента данных, которые были унаследованы при вы­полнении вызоваfork, на новые соответствующие сегменты, заданные в файле. Прежние сегменты теряются. Это эффективный метод смены выполняемой про­цессом программы, но не самого процесса. Файлы, уже открытые до выполнения примитива ехес, остаются открытыми после его выполнения.

В следующем примере пользовательская программа, вызываемая как команда shell, выполняет в отдельном процессе стандартную командуshellls, которая выдаёт на экран содержимое текущего каталога файлов.

if (fork ()==(0) wait(0); /* родительский процесс */

else execl("ls", "Is", 0); /* порождённый процесс */

Таким образом, с практической точки зрения процесс в UNIXявляется объектом, создаваемым в результате выполнения функцииfork(). Каждый процесс, за исключением начального (нулевого), порождается в результате запуска дру­гим процессом операции fork(). Каждый процесс имеет одного родителя, но мо­жет породить много процессов. Начальный (нулевой) процесс является особенным процессом, который создается в результате загрузки системы. После порожде­ния нового процесса с идентификатором 1 нулевой процесс становится процес­сом подкачки и реализует механизм виртуальной памяти. Процесс с идентифика­тором 1, известный под именемinit, является предком любого другого процесса в системе и связан с каждым процессом особым образом.

Лекция №1.

Информатика - наука о способах получения, накопления, хранения, преобразования, передачи, защиты и использования информации. Она включает дисциплины, относящиеся к обработке информации в вычислительных машинах и вычислительных сетях: как абстрактные, вроде анализа алгоритмов, так и довольно конкретные, например, разработка языков программирования. Информатика – молодая научная дисциплина, изучающая вопросы, связанные с поиском, сбором, хранением, преобразованием и использованием информации в самых различных сферах человеческой деятельности.

Термин «информатика» был впервые введён в Германии Карлом Штейнбухом в 1957 году. В 1962 году этот термин был введён во французский язык Ф. Дрейфусом, который также предложил переводы на ряд других европейских языков. В советской научно-технической литературе термин «информатика» был введён А. И. Михайловым, А. И. Черным и Р. С. Гиляревским в 1968 году.

Отдельной наукой информатика была признана лишь в 1970-х; до этого она развивалась в составе математики, электроники и других технических наук. Некоторые начала информатики можно обнаружить даже в лингвистике. С момента своего признания отдельной наукой информатика разработала собственные методы и терминологию.

Лекция №2.

В современной информатике используются в основном три системы счисления (все – позиционные): двоичная, шестнадцатеричная и десятичная.

Двоичная система счисления используется для кодирования дискретного сигнала, потребителем которого является вычислительная техника. Такое положение дел сложилось исторически, поскольку двоичный сигнал проще представлять на аппаратном уровне. В этой системе счисления для представления числа применяются два знака – 0 и 1.

Шестнадцатеричная система счисления используется для кодирования дискретного сигнала, потребителем которого является хорошо подготовленный пользователь – специалист в области информатики. Используемые знаки для представления числа – десятичные цифры от 0 до 9 и буквы латинского алфавита – A, B, C, D, E, F.

Десятичная система счисления используется для кодирования дискретного сигнала, потребителем которого является так называемый конечный пользователь – неспециалист в области информатики (очевидно, что и любой человек может выступать в роли такого потребителя). Используемые знаки для представления числа – цифры от 0 до 9.

Прямой код двоичного числа образуется из абсолютного значения этого числа и кода знака (нуль или единица) перед его старшим числовым разрядом.

Обратный код двоичного числа образуется по следующему правилу. Обратный код положительных чисел совпадает с их прямым кодом. Обратный код отрицательного числа содержит единицу в знаковом разряде числа, а значащие разряды числа заменяются на инверсные, т.е. нули заменяются единицами, а единицы - нулями.


Модифицированные обратные и дополнительные коды двоичных чисел отличаются соответственно от обратных и дополнительных кодов удвоением значений знаковых разрядов. Знак “+” в этих кодах кодируется двумя нулевыми знаковыми разрядами, а “-” - двумя единичными разрядами.

Лекция №3.

Алгебра логики – это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности и ложности) и логических операций над ними.

Из элементарных высказываний с помощью логических связок " и", "или", "не", "если: то" и других (логических операций) строятся сложные высказывания - формулы (или функции) алгебры логики.

В алгебре логики основными (элементарными) операциями являются:

отрицание,

логическое сложение (дизъюнкция),

логическое умножение (конъюнкция),

импликация,

эквивалентность.

Способы построения новых высказываний из заданных с помощью логических связок, их преобразования и установления истинности изучаются в логике высказываний с помощью алгебраических методов.

Логической функцией называется функция f (X1,X2,...,Xn) , которая, так же как и ее аргументы, может принимать только два значения (0 и 1).

Так же, как и в алгебре арифметики, в алгебре логики устанавливается приоритет выполнения логических операций. Они упорядочены в следующей последовательности: отрицание; конъюнкция; дизъюнкция; импликация; эквивалентность.

Лекция №4.

При проектировании цифровых логических устройств часто возникает задача по заданной таблице истинности записать выражение для логической функции и реализовать ее в виде логической схемы, состоящей из функционально полного набора логических элементов. Данную задачу называют также задачей синтеза логических схем или логических устройств.

Синтез логических схем на основе функционально полного набора логических элементов состоит из представления логических функций, описывающих данные логические схемы в нормальных формах. Нормальной формой представления считается форма, полученная посредством суперпозиций вспомогательных логических функций – минтермов и макстернов.

Минтермом называют логическую функцию, которая принимает значение логической единицы только при одном значении логических переменных и значение логического нуля при других значениях логических переменных.

Макстерном называют логическую функцию, которая принимает значение логического нуля только при одном значении логических переменных и значение логической единицы при других значениях логических переменных.

Из минтермов и макстернов методом суперпозиции можно составить логические функции, которые называются соответственно логической функцией, представленной посредством совершенных дизъюнктивных нормальных форм (СДНФ), и логической функцией, представленной посредством совершенных конъюнктивных нормальных форм (СКНФ). Полученные таким образом функции СДНФ и СКНФ будут представлять искомую логическую функцию по заданной таблице истинности.

Лекция №5

Программное обеспечение ПО - совокупность программ системы обработки информации и программных документов, необходимых для эксплуатации этих программ.

Также - совокупность программ, процедур и правил, а также документации, относящихся к функционированию системы обработки данных.

Программное обеспечение компьютера постоянно пополняется, развивается, совершенствуется. Стоимость установленных программ на современном ПК зачастую превышает стоимость его технических устройств. Разработка современного ПО требует очень высокой квалификации от программистов.

Программное обеспечение является одним из видов обеспечения вычислительной системы, наряду с техническим (аппаратным), математическим, информационным, лингвистическим, организационным и методическим обеспечением.

Программное обеспечение принято по назначению подразделять на системное, прикладное и инструментальное, а по способу распространения и использования на несвободное/закрытое, открытое и свободное. Свободное программное обеспечение может распространяться, устанавливаться и использоваться на любых компьютерах дома, в офисах, школах, вузах, а также коммерческих и государственных учреждениях без ограничений.

Лекция №6

Операционная система - комплекс программ, обеспечивающий управление аппаратными средствами компьютера, организующий работу с файлами и выполнение прикладных программ, осуществляющий ввод и вывод данных.

Общими словами, операционная система - это первый и основной набор программ, загружающийся в компьютер. Помимо вышеуказанных функций ОС может осуществлять и другие, например предоставление общего пользовательского интерфейса и т.п.

Сегодня наиболее известными операционными системами являются ОС семейства Microsoft Windows и UNIX-подобные системы.

Интерфейсные функции:

Управление аппаратными средствами, устройствами ввода- вывода

Файловая система

Поддержка многозадачности (разделение использования памяти, времени выполнения)

Ограничение доступа, многопользовательский режим работы (если взять к примеру ДОС, то он не может быть многопользовательским)

Сеть (взять спектрум в пример...)

Внутренние функции:

Обработка прерываний

Виртуальная память

"Планировщик" задач

Буферы ввода- вывода

Обслуживание драйверов устройств

Лекция №7

Оболочка операционной системы (от англ. shell - оболочка) - интерпретатор команд операционной системы, обеспечивающий интерфейс для взаимодействия пользователя с функциями системы.

В общем случае, различают оболочки с двумя типами интерфейса для взаимодействия с пользователем: текстовый пользовательский интерфейс (TUI) и графический пользовательский интерфейс (GUI).

Командный интерпретатор.

Для обеспечения интерфейса командной строки в операционных системах часто используются командные интерпретаторы, которые могут представлять собой самостоятельные языки программирования, с собственным синтаксисом и отличительными функциональными возможностями.

В операционные системы MS-DOS и Windows 9x включён командный интерпретатор command.com, в Windows NT включён cmd.exe. В большом семействе командных оболочек UNIX наиболее популярны bash, csh, ksh, zsh, в UNIX-подобных системах у пользователя есть возможность менять командный интерпретатор, используемый по умолчанию.

Функции.

Командный интерпретатор исполняет команды своего языка, заданные в командной строке или поступающие из стандартного ввода или указанного файла.

В качестве команд интерпретируются вызовы системных или прикладных утилит, а также управляющие конструкции. Кроме того, оболочка отвечает за раскрытие шаблонов имен файлов и за перенаправление и связывание ввода-вывода утилит.

В совокупности с набором утилит, оболочка представляет собой операционную среду, язык программирования и средство решения как системных, так и некоторых прикладных задач, в особенности, автоматизации часто выполняемых последовательностей команд.

Лекция №8

Текстовый редактор - компьютерная программа, предназначенная для обработки текстовых файлов, такой как создание и внесение изменений.

Условно выделяют два типа редакторов: потоковые текстовые редакторы и интерактивные.

Потоковые текстовые редакторы представляют собой компьютерные программы, которые предназначены для автоматизированной обработки входных текстовых данных, полученных из текстового файла, в соответствии с заранее заданными пользователями правилами. Чаще всего правила представляют собой регулярные выражения, на специфичном для данного конкретного текстового редактора диалекте. Примером такого текстового редактора может служить редактор Sed.

Интерактивные текстовые редакторы - это семейство компьютерных программ предназначенных для внесения изменений в текстовый файл в интерактивном режиме. Такие программы позволяют отображать текущее состояние текстовых данных в файле и производить над ними различные действия.

Строго говоря, текстовый процессор может быть причислен к интерактивным текстовым редакторам, однако для данного класса компьютерных программ их возможность применения в качестве интерактивного текстового редактора не является целевой.

Лекция №9

Табличный процессор - категория программного обеспечения, предназначенного для работы с электронными таблицами. Изначально табличные редакторы позволяли обрабатывать исключительно двухмерные таблицы, прежде всего с числовыми данными, но затем появились продукты, обладавшие помимо этого возможностью включать текстовые, графические и другие мультимедийные элементы. Инструментарий электронных таблиц включает мощные математические функции, позволяющие вести сложные статистические, финансовые и прочие расчеты.

Электронные таблицы (или табличные процессоры) - это прикладные программы, предназначенные для проведения табличных расчетов. Появление электронных таблиц исторически совпадает с началом распространения персональных компьютеров. Первая программа для работы с электронными таблицами - табличный процессор, была создана в 1979 году, предназначалась для компьютеров типа Apple II и называлась VisiCalc. Одним из самых популярных табличных процессоров сегодня является MS Excel, входящий в состав пакета Microsoft Office.

Лекция №10

Компьютерная графика (также машинная графика) - область деятельности, в которой компьютеры используются как инструмент для синтеза (создания) изображений, так и для обработки визуальной информации, полученной из реального мира. Также компьютерной графикой называют результат такой деятельности.

История

Первые вычислительные машины не имели отдельных средств для работы с графикой, однако уже использовались для получения и обработки изображений. Программируя память первых электронных машин, построенную на основе матрицы ламп, можно было получать узоры.

В 1961 году программист С. Рассел возглавил проект по созданию первой компьютерной игры с графикой. Создание игры («Космические войны») заняло около 200 человеко-часов. Игра была создана на машине PDP-1.

В 1963 году американский учёный Айвен Сазерленд создал программно-аппаратный комплекс Sketchpad, который позволял рисовать точки, линии и окружности на трубке цифровым пером. Поддерживались базовые действия с примитивами: перемещение, копирование и др. По сути, это был первый векторный редактор, реализованный на компьютере. Также программу можно назвать первым графическим интерфейсом, причём она являлась таковой ещё до появления самого термина.

В середине 1960-х гг. появились разработки в промышленных приложениях компьютерной графики. Так, под руководством Т. Мофетта и Н. Тейлора фирма Itek разработала цифровую электронную чертёжную машину. В 1964 году General Motors представила систему автоматизированного проектирования DAC-1, разработанную совместно с IBM.

В 1968 году группой под руководством Н. Н. Константинова была создана компьютерная математическая модель движения кошки. Машина БЭСМ-4, выполняя написанную программу решения дифференциальных уравнений, рисовала мультфильм «Кошечка», который для своего времени являлся прорывом. Для визуализации использовался алфавитно-цифровой принтер.

Существенный прогресс компьютерная графика испытала с появлением возможности запоминать изображения и выводить их на компьютерном дисплее, электронно-лучевой трубке.