Тарифы Услуги Сим-карты

Структурная мера информации. Аддитивная мера Хартли. Логарифмическая мера информационной емкости

Существует несколько подходов к измерению информации.

Комбинаторная мера

Для лучшего понимания рассмотрим несколько простейших примеров.

Пример 1 . Проведем опыт. Возьмем игральный кубик. Он имеет шесть сторон, на каждой из которых изображены числа от одного до шести.

Подбросим его. При бросании кубика выпадает одно из имеющихся на сторонах кубика число. Получившееся таким образом число - есть исход нашего опыта.

Подбрасывая игральный кубик сколь угодно раз, мы можем получить только шесть возможных чисел. Обозначим это как N = 6.

Этот пример позволяет перейти к понятию комбинаторной меры информации и дать следующее определение:

Комбинаторная мера информации N - это способ измерения количества информации путем оценки количества возможных комбинаций информационных элементов.

Поскольку в примере с игральным кубиком возможно только шесть вариантов исхода опыта, иными словами, шесть комбинаций, то и количество информации в соответствии с комбинаторной мерой составляет N = 6 комбинаций.

Рассмотрим следующий пример.

Пример 2. Пусть задана одна из десятичных цифр, например, цифра 8 и одна из шестнадцатеричных – к примеру, цифра 6 (можно было взять любую другую шестнадцатеричную - 8, В, F и т. д.). Теперь, в соответствии с определением комбинаторной меры, определим количество информации, заключенное в каждой из этих цифр. Поскольку цифра 8 является десятичной, а значит, представляет один символ из десяти, то N 8 = 10 комбинаций. Аналогично, цифра 6 представляет один из шестнадцати символов, а поэтому N 6 = 16 комбинаций. Следовательно, что шестнадцатеричная цифра содержит больше информации, чем десятичная.

Из рассмотренного примера можно сделать вывод, что чем меньше цифр находится в основании системы счисления, тем меньше информации несет в себе один ее элемент.

Двоичная логарифмическая мера

Английский инженер Р. Хартли предложил измерять количество информации двоичной логарифмической мерой:

где N - количество различных комбинаций информационных элементов. Единицей измерения информации при таком измерении является бит.

Поскольку выведенная Р.Хартли формула учитывает количество возможных комбинаций N, то интересно узнать, какую оценку количества информации дает двоичная логарифмическая мера для рассмотренных выше примеров.

Подсчет дает следующие результаты:

в примере с кубиком I = log 2 6 = 2,585 бит;

в примере с десятичной системой счисления I = log 2 10 = 3,322 бит;

в примере с шестнадцатеричной системой счисления I = log 2 16 = 4 бит;

в примере с двоичной системой счисления I = log 2 2 = 1 бит.

Последняя цифра говорит о том, что в каждой цифре двоичной системы счисления содержится один бит информации. Вообще, в технических системах двоичная система счисления применяется для кодировки двух возможных состояний, например 1 обозначает наличие электрического тока в сети, 0 - его отсутствие.

Во всех рассмотренных выше примерах исходы опытов были равновероятными и взаимно независимыми. Это означает, что при подбрасывании кубика каждая из шести граней имеет одинаковую вероятность результативного исхода. А также, что результат следующего подбрасывания никак не зависит от результата предшествующего.

Равновероятные и взаимно независимые события в реальной жизни встречаются довольно редко. Если обратить внимание на разговорные языки, например русский, то можно сделать интересные выводы. Для упрощения теоретических исследований в информатике принято считать, что русский алфавит состоит из 32 символов (е и ё, а также ь и ъ между собой не различаются, но добавляется знак пробела между словами). Если считать, что каждая буква русского языка в сообщении появляется одинаково часто и после каждой буквы может стоять любой другой символ, то можно определить количество информации в каждом символе русского языка как:

I = log 2 32 = 5.

Однако, фактически все бывает не так. Во всех разговорных языках одни буквы встречаются чаще, другие - гораздо реже. Исследования говорят, что на 1000 букв приходится следующее число повторений:

Кроме того, вероятность появления отдельных букв зависит от того, какие буквы им предшествуют. Так, в русском языке после гласной не может следовать мягкий знак, не могут стоять четыре гласные подряд и так далее. Любой разговорный язык имеет свои особенности и закономерности. Поэтому количество информации в сообщениях, построенных из символов любого разговорного языка, нельзя оценивать ни комбинаторной, ни двоичной логарифмической мерами.

Структурная мера информации

При использовании структурных мер информации учитывается только дискретное строение сообщения, количество содержащихся в нем информационных элементов, связей между ними.

При структурном подходе различаются:

1) Геометрическая мера — предполагает измерение параметра геометрической модели информационного сообщения (длины, площади, объема…) в дискретных единицах.

Информационная емкость модели – максимально возможное количество информации – определяется как сумма дискретных значений по всем измерениям (координатам).

2) Комбинаторная мера – количество информации определяемое как число комбинаций элементов.

3) Аддитивная мера – (мера Хартли) – количество информации измеряется в двоичных единицах – битах.

Используются понятия:

Глубина q числа – количество символов, принятых для представления информации. В каждый момент времени реализуется только один какой-либо символ.

Длина n числа – количество позиций, необходимых и достаточных для представления чисел заданной величины.

При заданных глубине и длине числа количество чисел, которые можно представить N = qn.

Логарифмическая величина: I = log2N =n log2q (бит) — мера Хартли.

Таким образом, количество информации, которое содержит сообщение, закодированное с помощью знаковой системы, равно количеству информации, которое несет один знак, умноженному на количество знаков.

За единицу количества информации принимается такое количество информации, которое содержит сообщение, уменьшающее неопределенность в два раза. Это бит.

Структурное — рассматривает дискретное строение массивов информации и их измерение простым подсчетом информационных элементов. (Простейшее кодирование массивов — комбинаторный метод.)

Структурные меры информации

Структурные меры учитывают только дискретное строение информации. Элементами информационного комплекса являются кванты — неделимые части информации. Различаютгеометрическую , комбинаторную и аддитивную меры.

Определение информации геометрическим методом представляет собой измерение длины линии, площади или объема геометрической модели информационного комплекса в количестве квантов. Максимально возможное число квантов в заданных структурных габаритах определяет информационную емкость системы . Информационная емкость есть число, указывающее количество квантов в полном массиве информации. Согласно рис. 1.2, г , количество информации М в комплексе X (T,N ), определенное геометрическим методом, равняется

Х, Т, N — интервалы, через которые осуществляются дискретные отсчеты.

В комбинаторной мере количество информации вычисляется как количество комбинаций элементов. Здесь учитываются возможные или реализованные комбинации.

Во многих случаях дискретное сообщение можно рассматривать как слово, состоящее из некоторого количества элементов n, заданных алфавитом, состоящим из т элементов-букв. Определим количество различных сообщений, которые можно образовать из данного алфавита. Если сообщение состоит из двух элементов (п= 2), то всего может быть различных сообщений. Например, из десяти цифр (0, 1, 2,…, 9) может быть образовано сто различных чисел от 0 до 99. Если количество элементов равно трем, то количество различных сообщений равно и т.д.

Таким образом, число возможных сообщений определяется:

где L — число сообщений; п — число элементов в слове; т — алфавит.

Чем больше L , тем сильнее может отличаться каждое сообщение от остальных. Величина L может быть принята в качестве меры количества информации. Однако выбор L в качестве меры количества информации связан с неудобствами: во-первых, при L =1 информация равна нулю, поскольку заранее известен характер сообщения (т.е. сообщение есть, а информация равна нулю); во-вторых, не выполняется условие линейного сложения количества информации, т.е. условие аддитивности. Если, например, первый источник характеризуется различными сообщениями, а второй — , то общее число различных сообщений для двух источников определяется произведением


11
Курс: "Теория информации и кодирования"
Тема: "МАТЕМАТИЧЕСКАЯ ТЕОРИЯ ИНФОРМАЦИИ"

1. КОЛИЧЕСТВО ИНФОРМАЦИИ, И ЕЕ МЕРА

На вход системы передачи информации (СПИ) от источника информации подается совокупность сообщений, выбранных из ансамбля сообщений (рис.1).

Помехи

x 1 y 1

x 2 y 2

… …

x n y n

Рис.1. Система передачи информации

Ансамбль сообщений - множество возможных сообщений с их вероятностными характеристиками - {Х, р (х ) } . При этом: Х={х 1 , х 2 , …, х m } - множество возможных сообщений источника; i = 1, 2 , ..., m , где m - объем алфавита; p (x i ) - вероятности появления сообщений, причем p (x i ) 0 и поскольку вероятности сообщений представляют собой полную группу событий, то их суммарная вероятность равна единице

.

Каждое сообщение несет в себе определенное количество информации. Определим количество информации, содержащееся в сообщении x i , выбранном из ансамбля сообщений источника {Х, р (х ) } . Одним из параметров, характеризующих данное сообщение, является вероятность его появления - p (x i ), поэтому естественно предположить, что количество информации I (x i ) в сообщении x i является функцией p (x i ). Вероятность появления двух независимых сообщений x 1 и x 2 равна произведению вероятностей p (x 1 , x 2 ) = p (x 1 ). p (x 2 ), а содержащаяся в них информация должна обладать свойством аддитивности, т.е.:

I (x 1 , x 2 ) = I (x 1 ) +I (x 2 ). (1)

Поэтому для оценки количества информации предложена логарифмическая мера:

. (2)

При этом, наибольшее количество информации содержат наименее вероятные сообщения, а количество информации в сообщении о достоверном событии равно нулю. Т.к. все логарифмы пропорциональны, то выбор основания определяет единицу информации:

log a x = log b x/log b a .

В зависимости от основания логарифма используют следующие единицы информации:

2 - [бит] (bynary digit - двоичная единица), используется при анализе ин-формационных процессов в ЭВМ и др. устройствах, функционирующих на основе двоичной системы счисления;

e - [нит] (natural digit - натуральная единица), используется в математических методах теории связи;

10 - [дит] (decimal digit - десятичная единица), используется при анализе процессов в приборах работающих с десятичной системой счисления.

Битом (двоичной единицей информации) - называется количество информации, которое снимает неопределенность в отношении наступления одного из двух равновероятных, независимых событий.

Среднее количество информации для всей совокупности сообщений можно получить путем усреднения по всем событиям:

. (3)

Количество информации, в сообщении, состоящем из n не равновероятных его элементов равно (эта мера предложена в 1948 г.К. Шенноном):

. (4)

Для случая независимых равновероятных событий количество инфор-мации определяется (эта мера предложена в 1928 г.Р. Хартли):

. (5)

2. СВОЙСТВА КОЛИЧЕСТВА ИНФОРМАЦИИ

1. Количество информации в сообщении обратно-пропорционально вероятности появления данного сообщения.

2. Свойство аддитивности - суммарное количество информации двух источников равно сумме информации источников.

3. Для события с одним исходом количество информации равно нулю.

4. Количество информации в дискретном сообщении растет в зависимости от увеличения объема алфавита - m .

Аддитивная мера (мера Хартли) использует понятия глубины А и длины n числа.

Глубина числа - количество символов (элементов), принятых для представления информации. В каждый момент времени реализуется только один какой-либо символ.

Длина n числа - количество позиций, необходимых и достаточных для представления чисел заданной величины.

Эти понятия могут быть распространены и на вариант нечислового сообщения. В этом случае глубина числа тождественна размеру алфавита, а длина числа - разрядности слова при передаче символьного сообщения.

Если сообщение - число, понятие глубины числа будет трансформировано в понятие основания системы счисления. При заданных глубине и длине числа количество чисел, которое можно представить, N = А n . Очевидно, что N однозначно характеризует степень исходной неопределенности. Исходная неопределенность по Хартли определяется

H 1 = log a N . (4)

Неопределенность после получения сообщения, остаточная неопределенность,

H 2 = log a N* , (5)

где N* - число возможных значений принятого слова после получения сообщения.

Основание логарифма в (5) определяет только единицы измерения неопределенности. При a=2 это двоичная единица информации, называемая бит. При a = 10 десятичная (дит ), при a =e натуральная (нат ). Далее мы будем всегда пользоваться двоичной единицей.

N* равно единице, если после получения информации нет неопределенности, т.е. получатель гарантировано получил то сообщение, которое было передано. Если получателю приходится после приема информации выбирать сообщения из некоторого множества, а это происходит тогда, когда в канале связи за счет влияния помех возникают искажения переданного сигнала, то характеризует число возможных сообщений при выборе. Таким образом, если передается символ некоторого алфавита, N* определяет возможную неоднозначность приема символа за счет искажений в канале связи. В случае измерительного опыта, число N* - характеризует число возможных значений величины после измерения и определяет погрешность измерения.

Очевидно, что должно быть N* < N, а N* = 1 только в идеальном случае передачи сообщения без потери информации или, что то же самое, измерения некоторой физической величины без ошибок. Количество информации по Хартли оценивается как

I=H 1 – H 2 = log a N - loga N* n = log a N/ N* . (6)

Логарифмическая мера, позволяющая, вычислять количество информации, содержащейся в сообщении, переданном числом длиной n и глубиной А :

I(q) =log 2 N=n log 2 А , бит . (7)

Следовательно, 1 бит информации соответствует одному элементарному событию, которое может произойти или не произойти. Такая мера количества информации удобна тем, что она обеспечивает возможность оперировать мерой как числом. Из сравнения (7) и (2) следует, что численное значение неопределенности определяет число двоичных разрядов, необходимое для кодирования символа алфавита А .

Логарифмическая мера для неопределенности и информации выбрана не случайно. Она оказывается удобной при описании сложных опытов. Допустим, что задача состоит в одновременном приеме информации от двух источников, не зависящих друг от друга. При этом N 1 и n 1 - число возможных сообщений до и после приема информации от первого источника, а - N 2 и n 2 от второго. Пусть H 11 и H 12 - исходная неопределенность знания первого и второго сообщения, соответственно, первого и второго источника. Естественно потребовать, чтобы общая неопределенность знания о двух сообщениях определялась суммой неопределенностей каждого, т.е. мера должна обладать свойством аддитивности

H = H 11 + H 12 .

Число возможных сочетаний двух независимых величин из множеств N 1 N 2 N = N 1 N 2 .

Тогда исходная неопределенность H =H 11 + H 12 , аналогично остаточная неопределенность H=H 21 +H 22 .

При наличии нескольких источников информации общее количество информации

I(q 1 , q 2 , ...,q n)= I(q 1)+ I(q 2)+...+I(q k) , (8)

где I(q k) - количество информации от источника k .

Логарифмическая мера информации позволяет измерять количество информации и широко используется на практике. Однако всегда надо учитывать, что все сообщения в этой мере полагаются равновероятными и независимыми. Эти допущения приводит на практике к существенно завышенным оценкам.

Примечание. Для рассмотрения дальнейшего материала необходимо использовать понятие «вероятность события» . Под вероятностью события (см., например, Лютикас В.С. Факультативный курс по математике. Теория вероятностей. М.: Просвещение, 1990.) принимается постоянная величина, около которой группируются значения частоты появление некоторого события, например, передачи одного из символов алфавита. Если частота появления любого символа алфавита при передаче длинной последовательности символов одинакова, то говорят о равновероятных событиях, символах, сообщениях и т.п. Независимыми сообщения полагают, если вероятности их передачи не зависят от того, какие сообщения были переданы ранее.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-29

Комбинаторная мера

Для лучшего понимания рассмотрим несколько простейших примеров.

Пример 1 . Проведем опыт. Возьмем игральный кубик. Он имеет шесть сторон, на каждой из которых изображены числа от одного до шести.

Подбросим его. При бросании кубика выпадает одно из имеющихся на сторонах кубика число. Получившееся таким образом число - есть исход нашего опыта.

Подбрасывая игральный кубик сколь угодно раз, мы можем получить только шесть возможных чисел. Обозначим это как N = 6.

Этот пример позволяет перейти к понятию комбинаторной меры информации и дать следующее определение:

Комбинаторная мера информации N - это способ измерения количества информации путем оценки количества возможных комбинаций информационных элементов.

Поскольку в примере с игральным кубиком возможно только шесть вариантов исхода опыта, иными словами, шесть комбинаций, то и количество информации в соответствии с комбинаторной мерой составляет N = 6 комбинаций.

Рассмотрим следующий пример.

Пример 2. Пусть задана одна из десятичных цифр, например, цифра 8 и одна из шестнадцатеричных – к примеру, цифра 6 (можно было взять любую другую шестнадцатеричную - 8, В, F и т. д.). Теперь, в соответствии с определением комбинаторной меры, определим количество информации, заключенное в каждой из этих цифр. Поскольку цифра 8 является десятичной, а значит, представляет один символ из десяти, то N 8 = 10 комбинаций. Аналогично, цифра 6 представляет один из шестнадцати символов, а поэтому N 6 = 16 комбинаций. Следовательно, что шестнадцатеричная цифра содержит больше информации, чем десятичная.

Из рассмотренного примера можно сделать вывод, что чем меньше цифр находится в основании системы счисления, тем меньше информации несет в себе один ее элемент.

Английский инженер Р. Хартли предложил измерять количество информации двоичной логарифмической мерой:

где N - количество различных комбинаций информационных элементов. Единицей измерения информации при таком измерении является бит.

Поскольку выведенная Р.Хартли формула учитывает количество возможных комбинаций N, то интересно узнать, какую оценку количества информации дает двоичная логарифмическая мера для рассмотренных выше примеров.

Подсчет дает следующие результаты:

в примере с кубиком I = log 2 6 = 2,585 бит;

в примере с десятичной системой счисления I = log 2 10 = 3,322 бит;

в примере с шестнадцатеричной системой счисления I = log 2 16 = 4 бит;

в примере с двоичной системой счисления I = log 2 2 = 1 бит.

Последняя цифра говорит о том, что в каждой цифре двоичной системы счисления содержится один бит информации. Вообще, в технических системах двоичная система счисления применяется для кодировки двух возможных состояний, например 1 обозначает наличие электрического тока в сети, 0 - его отсутствие.



Во всех рассмотренных выше примерах исходы опытов были равновероятными и взаимно независимыми. Это означает, что при подбрасывании кубика каждая из шести граней имеет одинаковую вероятность результативного исхода. А также, что результат следующего подбрасывания никак не зависит от результата предшествующего.

Равновероятные и взаимно независимые события в реальной жизни встречаются довольно редко. Если обратить внимание на разговорные языки, например русский, то можно сделать интересные выводы. Для упрощения теоретических исследований в информатике принято считать, что русский алфавит состоит из 32 символов (е и ё, а также ь и ъ между собой не различаются, но добавляется знак пробела между словами). Если считать, что каждая буква русского языка в сообщении появляется одинаково часто и после каждой буквы может стоять любой другой символ, то можно определить количество информации в каждом символе русского языка как:

I = log 2 32 = 5.

Однако, фактически все бывает не так. Во всех разговорных языках одни буквы встречаются чаще, другие - гораздо реже. Исследования говорят, что на 1000 букв приходится следующее число повторений:

Кроме того, вероятность появления отдельных букв зависит от того, какие буквы им предшествуют. Так, в русском языке после гласной не может следовать мягкий знак, не могут стоять четыре гласные подряд и так далее. Любой разговорный язык имеет свои особенности и закономерности. Поэтому количество информации в сообщениях, построенных из символов любого разговорного языка, нельзя оценивать ни комбинаторной, ни двоичной логарифмической мерами.