Тарифы Услуги Сим-карты

Межсетевое взаимодействие. Шлюзы и межсетевые экраны. Сокрытие адресов NAT

Межсетевое взаимодействие — это практика объединения нескольких компьютерных сетей вместе для формирования более крупных сетей. Различные типы сетей могут быть подключены к промежуточным устройствам, известным как шлюзы, и после их соединения они действуют как одна большая сеть. Межсетевое взаимодействие было разработано как ответ на несколько проблем, возникших в первые дни персональных компьютеров и составляющих основу современного Интернета.
Многие люди каждый день используют разные типы сетей, даже не осознавая этого. Бизнесмен, который использует смартфон для проверки электронной почты, использует сотовую сеть, а домашний пользователь может передавать музыку на ноутбук через беспроводную сеть. Сельские пользователи могут получить доступ к сети к своему интернет-провайдеру через коммутируемое соединение. В корпоративном мире большие проводные сети являются нормой. Межсетевое взаимодействие позволяет всем этим сетям соединяться друг с другом, несмотря на их технологические различия.

Ключом к переходу на различные типы сетей является концепция пакетов — крошечных отдельных единиц данных. Пакеты являются основой для современных компьютерных сетей, но не ограничиваются какой-либо одной сетевой технологией. Вместо этого пакеты могут быть вставлены в так называемые фреймы, которые предназначены для определенных сетевых технологий. Эта компоновка позволяет использовать пакеты из любого типа сети в любой другой сети. Специальные устройства, поддерживающие более чем одну сетевую технологию, называемую шлюзами или маршрутизаторами, могут передавать пакеты между этими различными сетями.

Межсетевое взаимодействие постепенно развивалось как ответ на несколько проблем. Самые ранние соединения между несколькими компьютерами были «немыми» терминалами с небольшой вычислительной мощностью, которые могли бы подключаться к мощным мощным мейнфреймам. Поскольку персональные компьютеры (ПК) начали заменять терминалы, ПК были сгруппированы в локальные сети (ЛВС). Хотя это имело много преимуществ, локальные сети были изолированы и не могли подключаться к другим ЛВС, что ограничивало производительность. Файловые серверы, принтеры и другие ресурсы не могут быть разделены между местоположениями, а организации с несколькими местоположениями не могут легко обмениваться информацией.

В начале 1970-х годов американские исследователи, работающие в сети оборонного ведомства, известной как сеть агентств по продвижению исследовательских проектов (ARPANET), начали исследовать возможность связывания своей сети с другими ранними сетями. Эти исследования показали, что ранние сетевые протоколы не очень хорошо подходят для межсетевого взаимодействия, и началась разработка протокола управления передачей и протокола Интернета (TCP / IP). К концу 1970-х годов ARPANET была связана с двумя другими сетями, использующими TCP / IP, и была написана важная страница в истории Интернета.

Новые сети продолжали подключаться к ARPANET в 1980-х годах, и все большее число локальных сетей были подключены друг к другу через ARPANET. В 1989 году сеть, созданная Национальным научным фондом (NSF), заменила ARPANET. Оттуда региональные сети были подключены к сети NSF с использованием TCP / IP и связанных протоколов, и появилась большая «сеть сетей» — Интернет.

В глобальных сетях связь между ЛВС осуществляется посредством так называемых мостов.

Мосты представляют собой программно-аппаратные комплексы, которые соединяют ЛВС между собой, а также ЛВС и удаленные рабочие станции (PC), позволяя им взаимодействовать друг с другом для расширения возможностей сбора и обмена информацией.

Мост обычно определяется как соединение между двумя сетями, которые используют одинаковый протокол взаимодействия, одинаковый тип среды передачи и одинаковую структуру адресации.

Известна следующая типизация мостов:

ѕ внутренний/внешний;

ѕ выделенный/совмещенный;

ѕ локальный/удаленный.

Внутренний -- мост располагается на файловом сервере.

Внешний -- на рабочей станции. Внешние мосты и их ПО устанавливаются в рабочей станции, которая не загружена функциями файлового сервера. Поэтому внешний мост может передавать данные более эффективно, чем внутренний.

Выделенный мост -- это ПК, который используется только как мост и не может функционировать как рабочая станция.

Совмещенный -- может функционировать и как мост, и как рабочая станция одновременно. Преимущество: ограничиваются издержки на покупку дополнительного компьютера. Недостаток: ограничение возможностей рабочей станции, совмещенной с мостом. (Если программа «зависает» и вызывает остановку ПК, функционирующего как мост, программа моста также останавливает операции, что прерывает разделение данных между сетями, а также прерывает сеансы работы машин, которые связаны через мост с файловым сервером.)

Локальный мост передает данные между сетями, которые расположены в пределах ограничений кабеля по расстоянию. Локальные Мосты применяются в следующих случаях:

  • - разделение больших сетей на подсети с целью увеличения быстродействия и уменьшения стоимости линий связи (рисунок 2.19).

Рисунок 2.19 - Пример разделения большой сети

Например, в одной организации различные отделы используют одну и ту же сеть. Поскольку большие сети медленнее малых, есть возможность выделить в небольшие подсети компактно расположенные отделы. Используя локальный мост, отделы, могут продолжать использовать данные таким образом, как если бы они работали в одной сети, приобретая при этом быстродействие и гибкость, присущие малой сети;

ѕ расширение физических возможностей сети (рисунок 2.20). Если сеть имеет максимально допустимое число узлов, поддерживаемое аппаратной схемой адресации, и есть необходимость в добавлении еще нескольких узлов, то для расширения такой сети используется мост. При этом возможно включение в сеть дополнительного файл-сервера;


Рисунок 2.20 - Расширение физических возможностей сети

  • - объединение сетей в интерсеть. Чтобы пользователи каждой сети могли получить доступ к информации других сетей, необходимо связать эти сети, образуя интерсеть (рисунок 21).

Рисунок 2.21 - Пример интерсети

Удаленные мосты применяются, когда расстояние не позволяет соединять сети посредством кабеля, если ограничение по длине кабеля для локального моста будет превышено. Удаленный мост использует промежуточную среду передачи (телефонные линии) для соединения с удаленной сетью или удаленными PC. При связи сети с удаленной сетью необходимо установить мост на каждом конце соединения, а при связи сети с удаленным PC требуется только сетевой мост.

Глава 3

^ ОРГАНИЗАЦИЯ МЕЖСЕТЕВОГО ВЗАИМОДЕЙСТВИЯ

3.1. Принципы согласования гетерогенных сетей

При организации взаимодействия двух или более компьютеров для получения работоспособной сети достаточно использование базовой сетевой технологии.

Базовая сетевая технология - это согласованный набор протоколов и реализующих их программно-аппаратных средств, достаточный для построения вычислительной сети. Примерами базовых технологий могут служить такие технологии, как Ethernet или Token Ring.

Имея программные и аппаратные средства, а также среду передачи данных, соответствующие одной базовой технологии, и объединив их в соответствии с требованиями стандарта с помощью данной технологии, можно организовать информационный обмен нескольких компьютеров. Протоколы и оборудование сетей, построенных на основе базовых технологий, специально разрабатываются для совместной работы, что избавляет от необходимости использовать дополнительные средства для организации их взаимодействия.

Появление новых стандартов и технологий не обозначает массовый переход всех систем только на эти технологии. Дело в том, что процесс модернизации обычно требует немалых затрат, связанных как со стоимостью нового оборудования и программного обеспечения, так и, например, с теми убытками, которые понесет организация в результате «простоя», вызванного установкой, настройкой и проверкой работоспособности закупленного сетевого оборудования и программного обеспечения. Поэтому, на практике существование рядом сетей, использующих различные поколения одной и той же технологии, - явление вполне уместное.

Весьма актуальной остается задача, когда требуется организовать взаимодействие подобных сетей, объединенных в одну составную сеть. При этом, т. е. при построении составных сетей, включающих в себя подсети, организованные с использованием различающихся базовых технологий, встает проблема согласования между собой различных базовых технологий, а также различных «версий» реализации этих технологий.

Оборудование, разработанное для работы в сети, основанной на одной технологии, зачастую оказывается далеко не всегда совместимым между собой. Это связано с тем, что производители сетевого оборудования используют свои собственные фирменные стандарты, которые не всегда полностью идентичны официальным. Происходить такое может в результате неточной, ошибочной реализации официальных стандартов либо в результате попыток эти стандарты улучшить (расширить), т. е. внести новые дополнительные функции или свойства, призванные улучшить работы производимого оборудования.

Поэтому при объединении подсетей, использующих сетевое оборудование разных фирм, иногда возникает необходимость выбора: либо установка нового оборудования только от одного производителя, либо переконфигурация всего имеющегося оборудования на работу по стандартным протоколам и технологиям, чтобы оно стало совместимо с оборудованием других производителей.

Другой сложностью, возникающей при объединении нескольких сетей, использующих различные технологии и архитектуры, является применение в этих сетях различных стеков протоколов.

В США попытка перевести все сети на единый стек протоколов OSI не увенчалась большим успехом. Это можно объяснить тем, что в сети Интернет стандартом де-факто стал стек TCP/IP, а кроме того, стеки IPX/SPX, NetBEUI и ряд других все еще не потеряли своей популярности.

Для согласования протоколов, принадлежащих разным стекам, используются три основных метода:


  • инкапсуляция;

  • трансляция;

  • мультиплексирование.

Инкапсуляция (или туннелирование) протоколов - метод согласования разнородных сетей, использующих различные технологии транспортировки данных. Данный метод применяется, если нужно организовать обмен данными между двумя сетями, построенными по одинаковой технологии. Такие сети могут быть связаны не непосредственно, а посредством других промежуточных сетей, использующих отличные технологии построения сетей. Метод инкапсуляции, применяемый в этом случае, использует промежуточные сети в качестве транзитных, передавая информацию через них посредством их же транспортных средств.

Принцип инкапсуляции протоколов имеет сходство с принципом инкапсуляции пакетов при их продвижении по стеку протоколов. Пакеты транспортного протокола, которые нужно переслать через транзитную сеть, инкапсулируются в пакеты транспортного протокола этой транзитной сети. После прохождения промежуточной, транзитной сети происходит обратный процесс - полученные пакеты декапсулируются и пересылаются непосредственно адресату.

Инкапсуляция может быть использована для транспортных протоколов любого уровня и зачастую является наиболее простым и быстрым решением среди остальных методов согласования протоколов. Однако инкапсуляция не обеспечивает возможности взаимодействия с узлами транзитной сети.

Метод трансляции обеспечивает согласование двух протоколов за счет конвертирования формата сообщений, поступающих из одной сети, в формат другой сети. Задачи трансляции обычно берут на себя аппаратно-технические средства, служащие для организации межсетевого взаимодействия.

Сложность выполнения трансляции зависит от степени различий транслируемых протоколов между собой, от используемых этими протоколами систем адресации и представления данных. Например, конвертирование сообщения Ethernet в сообщение Token Ring выполняется достаточно просто, поскольку они используют одинаковую систему адресации пакетов.

К числу преимуществ трансляции перед другими методами можно отнести:


  • отсутствие необходимости устанавливать дополнительное программное обеспечение на рабочих станциях;

  • упрощение процессов администрирования, поиска неисправностей и обеспечения сетевой безопасности за счет локализации места возникновения проблем, связанных с межсетевым взаимодействием.
Недостатки трансляции:

  • транслятор представляет собой «узкое место» составной сети, так как через него должен проходить весь межсетевой обмен данными, и при увеличении числа пользователей, запрашивающих ресурсы другой подсети, уровень работоспособности сети может значительно упасть;

  • трансляция зачастую оказывается весьма трудоемким с точки зрения вычислительных мощностей методом, что может уменьшать фактическую скорость передачи данных.
Мультиплексирование является еще одним методом согласования протоколов. Данный метод основан на принципе универсальности отдельных узлов, участвующих во взаимодействии. На этих узлах производится установка и настройка одновременной работы сразу нескольких стеков протоколов, что позволяет им обрабатывать сообщения, получаемые от узлов, использующих различные стеки протоколов.

При этом задачи определения, с использованием какого именно стека происходит обработка полученного сообщения, выполняются специальными программными средствами, называемыми мультиплексорами или менеджерами протоколов.

Таким образом, мультиплексор протоколов выполняет коммутацию пакетов между протоколами соседних уровней различных стеков.

Примером использования метода мультиплексирования протоколов может служить некий сервер, поддерживающий прикладные протоколы NCP и NFS и способный благодаря этому выполнять запросы рабочих станций, находящихся в сетях NetWare и Windows NT одновременно.

По сравнению с прочими методами согласования протоколов мультиплексирование позволяет избавиться от «узкого места» сети, а значит, и от задержек, возникающих в результате ожидания очереди на обработку.

Однако при этом страдает простота администрирования и контроля работоспособности сети. Кроме того, данный метод требует установки на рабочие станции дополнительных стеков протоколов.

^ 3.2. Маршрутизация пакетов

3.2.1. Принципы маршрутизации пакетов

Под термином «маршрутизация пакетов» можно понимать некий механизм, позволяющий осуществить передачу пакета с одного узла составной сети на другой.

Как уже говорилось ранее, локальная сеть может быть разделена на две подсети с помощью таких сетевых устройств, как мосты и коммутаторы. Однако, очевидно, что эти же устройства могут использоваться и для объединения двух и более сетей в единую составную сеть.

Мосты и коммутаторы относятся к средствам физического и канального уровня сетевой модели 051. В силу этого, объединенная с их помощью сеть будет иметь ряд ограничений и недостатков, связанных с базовыми технологиями, по которым построены входящие в нее подсети.

Прежде всего, топология составной сети, построенной с использованием сетевого оборудования первого и второго уровней модели 051, не должна содержать петель, т. е. между отправителем и получателем всегда должен существовать только один единственный путь или маршрут. Такое ограничение существенно снижает надежность сети из-за отсутствия резервных маршрутов пересылки данных.

Кроме того, возникают проблемы, связанные с системой адресации, необходимой для обеспечения обмена данными между любыми узлами составной сети. Система физических адресов, используемая на нижних уровнях сетевой модели, в масштабах составной сети оказывается недостаточно гибкой и удобной.

Возникает и ряд других сложностей, связанных с разнородностью объединенных сетей.

Решением этих проблем стало использование маршрутизаторов - аппаратных и программных средств, способных выполнять функции третьего, сетевого уровня модели 051.

Сетевое оборудование первых двух и третьего уровня использует различную информацию в процессе ее перемещения от источника к адресату, т. е. выполняет схожие задачи, но принципиально разными способами.

Объединение разнородных подсетей с помощью маршрутизаторов (рис. 3.1) допускает наличие петель в топологии сети. Обыч-

Рис. 3.1. Объединение гетерогенных подсетей в составную

но в сложных составных сетях практически всегда существует несколько альтернативных маршрутов, по которым возможна передача данных между двумя узлами. Кроме того, крупные составные сети могут включать в себя сети различных масштабов - от локальных до территориально-распределенных глобальных сетей.

Маршрутом пересылки пакета с одного узла составной сети на другой является порядок прохождения этим пакетом транзитных сетей, соединяющих сети, в которых расположены источник и адресат данного пакета.

Составные сети, в которых требуется маршрутизация пакета на сетевом уровне, должны быть объединены между собой посредством маршрутизаторов. Поэтому маршрутом пересылки пакета по сети можно назвать последовательность маршрутизаторов, через которые этот пакет будет переправлен в процессе следования к своему адресату.

Маршрутизация пакетов включает в себя две основные задачи:


  • определение оптимального маршрута пересылки пакета по составной сети;

  • собственно пересылка пакета по сети.
Чтобы иметь возможность определить оптимальный маршрут пересылки пакета, маршрутизатор должен иметь информацию обо всех существующих и доступных в данный момент времени маршрутах. Метод, основанный на таком представлении маршрутной информации, называется маршрутизацией по источнику и обычно используется при тестировании работы сети.

Однако такая информация, особенно в сложных и крупных сетях, оказывается весьма громоздкой и неудобной для осуществления по ней поиска с целью выбора подходящего маршрута.

Поэтому ни узел, отправивший пакет, ни какой-либо промежуточный маршрутизатор на пути их следования не хранят информацию обо всем маршруте пакета целиком. Узел-отправитель, а также каждый маршрутизатор знают лишь адрес маршрутизатора, на который нужно направить пакет, чтобы он был доставлен по назначению. Другими словами, маршрутизатор знает, что определенный пункт назначения может быть достигнут по оптимальному пути за счет отправки пакета определенному маршрутизатору, который знает адрес следующего на пути к конечному пункту назначения маршрутизатора.

Таким образом, процесс маршрутизации состоит в определении следующего узла в пути следования пакета и пересылки пакета этому узлу. Такой узел называют хопом (от англ. Иор - прыжок, скачок). Действительно, передача пакета по составной сети происходит своего рода скачками от маршрутизатора к маршрутизатору.

Информация, ставящая в соответствие конечному адресу назначения пакета адрес маршрутизатора, на который нужно дальше отправить пакет для достижения адреса назначения, хранится в специальной таблице маршрутов (табл. 3.1), которая размещается на маршрутизаторе.

Запись таблицы маршрутов обычно содержит следующие элементы:


  • поле, содержащее адрес сети назначения;

  • поле, содержащее адрес следующего по ходу следования пакета маршрутизатора;

  • вспомогательные поля.
В зависимости от используемого алгоритма маршрутизации таблица маршрутов может заполняться вручную администратором либо посредством специальных протоколов сбора маршрутной информации.

При этом своя таблица маршрутов, даже самая элементарная, должна быть на каждом хосте.

Чтобы информация о маршрутах оставалась актуальной и соответствовала действительно существующим маршрутам, мар-


^ Таблица 3.1. Пример таблицы маршрутов программного маршрутизатора операцией ной системы Windows ХР


Сетевой адрес

Маска сети

Адрес шлюза

Интерфейс

Метри ка

0.0.0.0

0.0.0.0

192.168.0.1

192.168.0.167

20

127.0.0.0

255.0.0.0

127.0.0.1

127.0.0.1

1

і 92.168.0.0

255.255.255.0

192.168.0.167

192.168.0.167

20

192.168.0.167

255.255.255.255

127.0.0.1

127.0.0.1

20

192.168.0.255

255.255.255.255

192.168.0.167

192.168.0.167

20

224.0.0.0

240.0.0.0

192.168.0.167

192.168.0.167

20

255.255.255.255

255.255.255.255

192.168.0.167

192.168.0.167

I

шрутизаторы в процессе своей работы по специальным протоколам обмениваются сообщениями, содержащими информацию об обнаруженных изменениях в топологии сети, например в результате разрыва какой-либо связи, а, следовательно, и об изменениях в допустимых маршрутах. На основе таких сообщений маршрутизаторы производят обновления таблиц маршрутов.

Выбор того или иного маршрута из таблицы происходит на основе применяемого данным маршрутизатором алгоритма маршрутизации, базирующегося на различных критериях.

3.2.2. Алгоритмы маршрутизации

Алгоритмы маршрутизации могут различаться по нескольким характеристикам:


  • по задачам, решаемым алгоритмом;

  • по принципу сбора и представления информации о сети;

  • по методу расчета оптимального маршрута.
Кроме того, алгоритмы маршрутизации должны максимально удовлетворять следующим требованиям:

  • выбираемый маршрут должен быть наиболее оптимальным;

  • реализация алгоритма должна быть простой, а его функционирование не требовательным к вычислительным мощностям;

  • алгоритм должен обладать высокой отказоустойчивостью;

  • адаптация работы алгоритма к изменяющимся условиям должна происходить как можно быстрее.
Таким образом, алгоритмы маршрутизации можно классифицировать следующим образом:

  • по актуальности используемых маршрутов:
статические; динамические;

  • по принципу обмена маршрутной информацией:
состояния канала; дистанционно-векторные.

  • по количеству определенных маршрутов:
одномаршрутные; многомаршрутные;

  • по используемой структуре маршрутизации:
одноуровневые; иерархические;

  • по отношению к домену:
внутридоменные; междоменные;

Статические алгоритмы маршрутизации основаны на ручном составлении таблиц маршрутизации администратором сети и обычно применяются в небольших сетях с простой топологией связей.

В динамических или адаптивных алгоритмах таблицы маршрутизации, и соответственно, сами маршруты постоянно обновляются в соответствии с меняющейся топологией сети.

Алгоритмы состояния канала отличаются от дистанционно-векторных в зависимости от того, куда и какая маршрутная информация рассылается. Рассылка маршрутной информации необходима для синхронизации таблиц маршрутов на всех маршрутизаторах сети. Алгоритмы состояния каналов рассылают обновленную маршрутную информацию небольшими порциями по всем направлениям. Дистанционно-векторные алгоритмы обмениваются сообщениями, содержащими большие объемы информации, однако обмен происходит только с соседними маршрутизаторами.

Различные алгоритмы могут определять один или несколько маршрутов для достижения какого-либо узла или подсети. В многомаршрутных алгоритмах каждому из возможных маршрутов в зависимости от его пропускной способности и других показателей назначается приоритет, на основании которого происходит выбор пути пересылки пакета. При этом обычно один маршрут является основным, а остальные - резервными.

Одноуровневые и иерархические алгоритмы работают в соответствующих системах маршрутизации. При этом в одноуровневой системе все маршрутизаторы равноправны по отношению друг к другу. Иерархическая маршрутизация основывается на разбиении большой сети на иерархически организованные подсети с собственной маршрутизацией внутри каждого уровня.

Системы маршрутизации могут обеспечивать выделение логических групп узлов, называемых доменами или областями. При этом отдельные алгоритмы маршрутизации могут действовать только в пределах доменов, другие же могут работать как в пределах доменов, так и между ними.

Для определения оптимальности того или иного маршрута алгоритмы используют показатели, характеризующие передачу данных по этому маршруту, например с точки зрения длины маршрута, качества канала связи и т. п. Такие показатели называются метриками маршрутов.

Более сложные алгоритмы в качестве метрик зачастую используют комбинацию нескольких показателей.

Наиболее распространенными метриками, используемыми в алгоритмах маршрутизации, являются:


  • длина маршрута - обычно это количество хопов, т. е. количество маршрутизаторов, через которые пакет должен пройти на пути к адресату;

  • надежность - степень отказоустойчивости канала связи либо соотношение возникающих ошибок к общему числу бит, передаваемых по этому каналу;

  • ширина полосы пропускания - характеризуется пропускной способностью канала связи;

  • задержка - время продвижения пакета от источника до пункта назначения с учетом загруженности сети, времени ожидания в очереди на обработку на маршрутизаторах;

  • физическое расстояние между узлами;

  • стоимость связи и т. д.
3.2.3. Протоколы обмена маршрутной информацией

Для отслеживания изменений в топологии связей сети, изменений в существующих маршрутах и синхронизации таблиц маршрутизации среди маршрутизаторов и узлов сети используются протоколы обмена маршрутной информацией.

При этом эти протоколы могут основываться на дистанцион- но-векторных алгоритмах, примером использования которых является протокол RIP, имеющий реализации для работы в различных стеках протоколов, таких, как TCP/IP или IPX/SPX, или на алгоритмах состояния связей, например как протоколы IS-IS стека OSI, NLSP стека IPX/SPX, OSPF стека TCP/IP.

Изобретение относится к системам связи. Технический результат заключается в усовершенствовании взаимодействия сетей связи. Общий глобальный шлюз (ОГШ) обеспечивает взаимодействие между первой сетью и второй сетью, так что мобильная станция, являющаяся абонентом в первой сети, может попасть во вторую сеть и быть аутентифицирована для использования второй сети. ОГШ получает параметры аутентификации от мобильной станции и определяет, удовлетворяют ли эти параметры аутентификации критериям аутентификации ОГШ. Если да, то ОГШ обращается к первой сети и запоминает информацию аутентификации из первой сети для последующих обращений к первой сети мобильной станцией. 4 н. и 17 з.п. ф-лы, 2 ил.

Рисунки к патенту РФ 2339188

По данной заявке приоритет испрашивается по дате предварительной заявки на патент США № 60/455909, поданной 18 марта 2003 г.

Область техники, к которой относится изобретение

Настоящее изобретение относится в общем к системам беспроводной связи, в частности к системам, которые позволяют обеспечить межсетевое взаимодействие между первой сетью и второй сетью.

Уровень техники

Множественный доступ с кодовым разделением каналов (МДКР) (CDMA) является цифровой беспроводной технологией, которая по своей природе имеет относительно большую пропускную способность полосы частот, т.е. которая по своему существу позволяет обслуживать больше телефонных вызовов на полосу частот, нежели другие технологии беспроводной связи. Кроме того, принципы расширенного спектра МДКР по своей природе обеспечивают безопасную связь. Патент США № 4901307, включенный сюда посредством ссылки, излагает подробности системы МДКР, которую можно использовать для передачи как речевых вызовов, так и неречевых компьютерных данных.

Несмотря на преимущества МДКР существуют и иные беспроводные системы, которые используют другие принципы. К примеру, на большей части Земли используется GSM (глобальная система мобильной связи - ГСМС), которая применяет вариант множественного доступа с временным разделением каналов.

Используются ли принципы МДКР или иные принципы, системы беспроводной связи можно представлять как имеющие два основных компонента, а именно - беспроводную сеть радиодоступа (СРД) (RAN) и базовую инфраструктуру, которая осуществляет связь с СРД и с внешними системами, такими как коммутируемая телефонная сеть общего пользования (КТСОП) (PSTN), интернет (в частности - хотя и не исключительно - для передачи данных) и т.п. Эта базовая инфраструктура, связанная с различными беспроводными технологиями, может быть очень дорогостоящей как в терминах аппаратного обеспечения, так и в терминах разработки протоколов связи для поддержания конкретизированного, как правило специфичного для системы переключения, абонирования с сопутствующими аутентификацией и слежением за вызовом, и биллинга. Следовательно, протоколы связи одной беспроводной системы (в случае GSM это протоколы GSM, а в случае МДКР, такой как cdma2000-1x, это протоколы IS-41) могут быть несовместимы с протоколами другой системы без дорогостоящих чрезмерных изменений в базовой инфраструктуре одной или другой системы.

Было бы желательно обеспечить межсетевое взаимодействие между сетью МДКР и сетью GSM, обеспечивая посредством этого использование СРД, основанной на МДКР, с присущими ее преимуществами, и обеспечивая использование базовой инфраструктуры, основанной на GSM, поскольку GSM существует на большей части Земли.

Тем самым двухрежимной мобильной станции может быть предоставлена возможность преимущественно взаимодействовать с базовой инфраструктурой GSM, когда находится, например, в Европе, и использовать инфраструктуру МДКР, когда она находится, например, в Соединенных Штатах.

Раскрытие изобретения

В одном аспекте настоящего изобретения для поддержания связи между первой сетью и второй сетью, чтобы дать возможность мобильной станции (МС) (MS), являющейся абонентом в первой сети, осуществлять связь с помощью второй сети, выполняется общий глобальный шлюз (ОГШ) (GGG), содержащий базу данных, выполненную для хранения идентификатора мобильной станции, и логический блок, выполненный для исполнения программной логики, чтобы получить аутентифицирующую информацию из первой сети на основании идентификатора мобильной станции.

В другом аспекте настоящего изобретения общий глобальный шлюз (ОГШ) содержит средство для хранения идентификации мобильной станции и средство для исполнения программной логики, чтобы получить информацию аутентификации из первой сети на основании идентификации мобильной станции.

В еще одном аспекте настоящего изобретения способ беспроводной связи между первой сетью и второй сетью, чтобы дать возможность мобильной станции (МС) (MS), являющейся абонентом в первой сети, осуществлять связь с помощью второй сети, содержит шаги, в которых запоминают идентификацию мобильной станции, получают информацию аутентификации из первой сети на основании идентификации мобильной станции, запоминают информацию аутентификации из первой сети в общем глобальном шлюзе (ОГШ) и используют запомненную информацию аутентификации из первой сети для аутентификации мобильной станции.

В еще одном аспекте настоящего изобретения машиночитаемый носитель, содержащий программу команд, исполняемых компьютерной программой для выполнения способа беспроводной связи между первой сетью и второй сетью, чтобы дать возможность мобильной станции (МС) (MS), являющейся абонентом в первой сети, осуществлять связь с помощью второй сети, при этом способ содержит шаги, в которых запоминают идентификацию мобильной станции, получают информацию аутентификации из первой сети на основании идентификации мобильной станции, запоминают информацию аутентификации из первой сети в общем глобальном шлюзе (ОГШ) и используют запомненную информацию аутентификации из первой сети для аутентификации мобильной станции.

Понятно, что другие варианты осуществления настоящего изобретения станут более очевидны для специалистов из нижеследующего подробного описания, в котором различные варианты осуществления изобретения показаны и описаны посредством иллюстраций. Как будет понятно, изобретение допускает иные и отличные варианты осуществления, а некоторые его детали могут модифицироваться в различных иных отношениях, и все это без отхода от сущности и объема настоящего изобретения. Соответственно, чертежи и подробное описание должны рассматриваться как иллюстративные по своей природе, а не ограничивающие.

Краткое описание чертежей

Фиг. 1 показывает блок-схему системы беспроводной связи, содержащей сеть МДКР, сеть GSM, общий глобальный шлюз (ОГШ) и мобильные станции.

Фиг. 2а и 2b показывают блок-схему алгоритма аутентификации и обращения к первой сети в случае роуминга во второй сети в соответствии с вариантом осуществления.

Осуществление изобретения

Настоящее изобретение относится в общем к системам беспроводной связи, а в частности к системам, которые позволяют обеспечить межсетевое взаимодействие между первой сетью и второй сетью. Фиг. 1 показывает первую сеть - сеть 12 МДКР, взаимодействующую со второй сетью - сетью 14 GSM, в соответствии с вариантом осуществления.

Фиг. 1 показывает блок-схему системы 10 беспроводной связи, содержащей сеть 12 МДКР, сеть 14 GSM, общий глобальный шлюз (ОГШ) 16 и мобильные станции 18, 20, 22, 24. Мобильная станция 20 включает в себя модуль 26 идентификации абонента (МИА) (SIM). Мобильная станция 24 МДКР включает в себя МИА 28. МИА 26, 28 являются съемными, соединенными с мобильными станциями 20, 24 соответственно, согласно известным в технике принципам. В варианте осуществления, включающем в себя сеть GSM, ОГШ называется глобальным шлюзом GSM.

ОГШ 16 обеспечивает взаимодействие между сетью 12 МДКР и сетью 14 GSM. ОГШ включает в себя приемопередатчик (не показан), который позволяет ему посылать и принимать сообщения к сети 12 МДКР и сети 14 GSM и от них.

В варианте осуществления сеть МДКР представляет собой сеть ANSI-41. Для специалистов было бы очевидно, что сеть 12 МДКР может быть любой из множества сетей МДКР, включая, но не ограничиваясь ими, cdma200-1x и cdma200-1xEV-DO.

Для специалистов было бы очевидно также, что сеть 14 GSM может быть любой из множества сетей GSM последующих сетей, включая, но не ограничиваясь ими, общие пакетные радиоуслуги (ОПРУ) (GPRS), универсальную мобильную систему связи (УМСС) (UMTS) и широкополосный МДКР (ШМДКР) (W-CDMA).

Далее, для специалистов будет очевидно, что сети 12, 14 не ограничиваются GSM и МДКР. К примеру, сети 12, 14 могли бы быть сетями 802.11, WiMax или интернет-протокола (IP). Сеть 12 МДКР и сеть 14 GSM определены на фиг. 1 для целей иллюстрации. В варианте осуществления, если одна из этих двух сетей 12, 14 является сетью GSM, GGG можно было бы рассматривать как акроним для глобального шлюза GSM (GSM Global Gateway).

Сеть 14 GSM содержит ядро 30 GSM и сеть 32 радиодоступа GSM. Ядро 30 GSM содержит регистр 34 абонентов GSM (РА GSM) (HLR GSM), центр 36 аутентификации GSM (ЦАу GSM) (GSM AuC), центр 38 службы коротких сообщений GSM (ЦСКС GSM) (GSM SMSC) и центр 40 мобильной коммутации шлюза GSM (ЦМКШ GSM) (GSM GMSC). Сеть 12 МДКР содержит регистр 42 абонентов МДКР (РА МДКР) (CDMA HLR), центр 44 аутентификации МДКР (ЦАу МДКР) (CDMA AuC), центр 46 мобильной коммутации МДКР (ЦМК МДКР) (CDMA MSC) и связанную сеть 48 радиодоступа МДКР (СРД МДКР) (CDMA RAN).

В отношении мобильной станции GSM, являющейся абонентом ядра 20 МДКР, ОГШ 16 функционирует как регистр 50 посетителей (РП) (VLR) для сети 14 GSM. В отношении мобильной станции 24 МДКР, являющейся абонентом в ядре 30 GSM, ОГШ 16 функционирует как регистр 52 посетителей (РП) для сети 12 МДКР.

Мобильные станции 18, 20, 22, 24 не обязательно должны быть абонентами в обеих базовых инфраструктурах 12, 14 и могут быть абонентами только в одной из базовых инфраструктур 12, 14.

В отношении как мобильной станции GSM, являющейся абонентом в ядре 30 МДКР, так и мобильной станции МДКР, являющейся абонентом в ядре 24 GSM, ОГШ 16 функционирует как центр 54 службы коротких сообщений (ЦСКС) (SMSC). Для специалистов было бы очевидно, что ОГШ 16 может включать в себя ЦСКС 54 или связываться с ним.

В варианте осуществления ОГШ 16 включает в себя сервисный центр, который посылает и принимает сообщения IP. Для специалистов было бы ясно, что ОГШ 16 может включать в себя любой известный в уровне техники сервисный центр, чтобы посылать и принимать сообщения в протоколе этого сервисного центра. В варианте осуществления посредством ОГШ 16 может быть послано и принято сообщение, при этом сообщения доставляют услуги, которые обеспечиваются первой сетью и которые могут не обеспечиваться второй сетью.

Мобильные станции 18, 20 поддерживают протокол сигнализации GSM, процедуру аутентификации GSM и службу коротких сообщений GSM. Аналогично, мобильные станции 22, 24 поддерживают протокол сигнализации МДКР, процедуру аутентификации МДКР и службу коротких сообщений МДКР.

В процессе регистрации мобильной станции МДКР, являющейся абонентом ядра 24 GSM, ОГШ действует как контроллер аутентификации в сети МДКР, но аутентифицирует мобильную станцию 24 с помощью механизма аутентификации GSM. Аналогично, в процессе регистрации мобильной станции GSM, являющейся абонентом ядра 20 МДКР, ОГШ действует как контроллер аутентификации в сети GSM, но аутентифицирует мобильную станцию 20 с помощью механизма аутентификации МДКР.

ОГШ действует как центр сообщений через центр 54 службы коротких сообщений. В сети МДКР сообщения СКС направляются к мобильной станции 24 и от нее с помощью механизма СКС МДКР. Аналогично, в сети GSM сообщения СКС маршрутизируются к мобильной станции 20 или от нее с помощью механизма СКС МДКР.

ОГШ 16 принимает сообщение местоположения от мобильных станций 20, 24. ОГШ использует идентификатор в сообщении местоположения, чтобы получить информацию аутентификации и знать, какой РА/ЦАу нуждается в запрашивании.

Поступающий вызов к зарегистрированному абоненту 24 GSM прибывает к ЦМК 40 шлюза GSM (ЦМКШ GSM) в домашней сети 14 GSM абонента. ЦМКШ 40 запрашивает РП 50 GSM определить местоположение абонента 24, который находится в сети 12 МДКР. Это местоположение абонента 24 с позиции РП 50 GSM находится в ОГШ 16, который представляется РМП GSM. Когда РП 50 GSM запрашивает маршрутизирующую информацию от ОГШ 16, ОГШ 16 запрашивает маршрутизирующую информацию от обслуживающего РП 52 МДКР, и тем самым вызов маршрутизируется к ЦМК 46 МДКР.

Аналогично, поступающий вызов к зарегистрированному абоненту 20 МДКР прибывает к ЦМК 46 МДКР в домашней сети 12 МДКР абонента. ЦМК 46 МДКР запрашивает РП 52 МДКР определить местоположение абонента 20, который находится в сети 14 GSM. Это местоположение абонента 20 МДКР с позиции РП 52 МДКР находится в ОГШ 16, который представляется РМП МДКР. Когда РП 52 МДКР запрашивает маршрутизирующую информацию от ОГШ 16, ОГШ 16 запрашивает маршрутизирующую информацию от обслуживающего РП 50 GSM, и тем самым вызов маршрутизируется к ЦМКШ 40 GSM.

Основанные на МДКР мобильные станции 22, 24 осуществляют связь с центром 46 мобильной коммутации (ЦМК) МДКР с помощью сети 48 радиодоступа (СРД) МДКР в соответствии с известными в технике принципами МДКР. В варианте осуществления ЦМК 46 МДКР представляет собой ЦМК IS-41.

Аналогично, основанные на GSM мобильные станции 18, 20 осуществляют связь с центром 40 мобильной коммутации GSM (ЦМК GSM) с помощью СРД 32 GSM в соответствии с известными в технике принципами GSM.

В соответствии с известными в технике принципами МДКР, СРД 48 МДКР включает в себя базовые станции и контроллеры базовых станций. В варианте осуществления показанная на фиг. 1 СРД 48 МДКР использует cdma2000 и в частности использует cdma2000 1x, cdma2000 3x или принципы высокоскоростной передачи данных (ВПД) (HDR) cdma2000.

В соответствии с известными в технике принципами GSM, СРД 32 GSM включает в себя базовые станции и контроллеры базовых станций. В варианте осуществления СРД 32 GSM использует либо GSM, GPRS, EDGE, UMTS, либо принципы ШМДКР.

Базовая инфраструктура МДКР, содержащая ЦМК 46 МДКР и СДР 48 МДКР, может включать в себя или может обращаться к центру 44 аутентификации МДКР (ЦАу МДКР) и регистру 42 абонентов МДКР (РА МДКР) в соответствии с известными в технике принципами МДКР, чтобы аутентифицировать абонентскую мобильную станцию 22 и собрать финансовую и биллинговую информацию, как требуется конкретной базовой инфраструктурой МДКР.

Аналогично, ядро 30 GSM может включать в себя или обращаться к центру 36 аутентификации GSM (ЦАу GSM) и регистру 34 абонентов (РА GSM) в соответствии с известными в технике принципами GSM, чтобы аутентифицировать абонентскую мобильную станцию 22 и собрать финансовую и биллинговую информацию, как требуется конкретной базовой инфраструктурой GSM.

СКС 46 МДКР использует ОГШ 16 для связи с сетью 14 GSM. Сеть 14 GSM может включать в себя или обращаться к центру 36 аутентификации GSM и регистру 34 абонентов (РА GSM) в соответствии с известными в технике принципами GSM, чтобы аутентифицировать абонентскую мобильную станцию 24 и собрать финансовую и биллинговую информацию, как требуется конкретной базовой инфраструктурой GSM.

Аналогично, ЦСКС 40 GSM использует ОГШ 16 для связи с сетью 12 МДКР. Сеть 12 МДКР может включать в себя или обращаться к центру 44 аутентификации МДКР и регистру 42 абонентов (РА) в соответствии с известными в технике принципами МДКР, чтобы аутентифицировать абонентскую мобильную станцию 20 и собрать финансовую и биллинговую информацию, как требуется конкретной сетью 12 МДКР.

Как ядро 30 GSM, так и базовая инфраструктура МДКР могут осуществлять связь с сетью, такой как коммутируемая телефонная сеть общего пользования (КТСОП) (PSTN) и (или) сеть интернет-протокола (IP).

В отношении мобильной станции 24 МДКР, являющейся абонентом в ядре 30 GSM, ОГШ 16 функционирует как РП 50 для сети 14 GSM. ОГШ 16 отвечает требованиям протокола GSM для РП 50. ОГШ 16 взаимодействует с сетевыми элементами ядра GSM, такими как РА 34 GSM и ЦСКС 38 GSM согласно спецификациям GSM за исключением того, что ОГШ 16 маршрутизирует поступающие вызовы в сеть 12 МДКР. РП 50 GSM также выполняет обновление местоположений с сетью 14 GSM, когда мобильная станция регистрируется в сети 12 МДКР. В этом смысле ОГШ 16 действует как РП для всей сети 12 МДКР.

В отношении мобильной станции 20 GSM, являющейся абонентом в сети 12 МДКР, ОГШ 16 функционирует как РП 52 для сети 12 МДКР. ОГШ 16 отвечает требованиям протокола МДКР для РП 52. ОГШ 16 взаимодействует с сетевыми элементами ядра МДКР, такими как РА 42 МДКР и ЦКС 46 МДКР согласно спецификациям МДКР за исключением того, что ОГШ 16 маршрутизирует поступающие вызовы в сеть 12 МДКР. РП 52 МДКР также выполняет обновление местоположений с сетью 12 МДКР, когда мобильная станция регистрируется в сети 14 GSM. В этом смысле ОГШ 16 действует как РП для всей сети 14 GSM.

Когда мобильная станция, которая находится в сети 12 МДКР, вызывается из сети 14 GSM, этот вызов маршрутизируется к РП 52 МДКР в ОГШ 16 по стандартным спецификациям. ОГШ 16 маршрутизирует вызов в сеть 12 МДКР. Сеть 12 МДКР окончательно маршрутизирует вызов в ЦКС 46 МДКР, обслуживающий мобильную станцию. Аналогично, если СКС маршрутизируется в сеть 12 МДКР из сети 14 GSM, ОГШ 16 маршрутизирует это сообщение в центр сообщений (не показано) в сети 12 МДКР.

Когда мобильная станция, которая находится в сети 14 GSM, вызывается из сети 12 МДКР, этот вызов маршрутизируется к РП 50 GSM в ОГШ 16 по стандартным спецификациям. ОГШ 16 маршрутизирует вызов в сеть 14 GSM. Сеть 14 GSM окончательно маршрутизирует вызов в ЦСКС 40 GSM, обслуживающий мобильную станцию. Аналогично, если СКС маршрутизируется в сеть 14 GSM из сети 12 МДКР, ОГШ 16 маршрутизирует это сообщение в ЦСКС GSM в сети 14 GSM.

Когда мобильная станция регистрируется в сети 12 МДКР, сеть 12 МДКР посылает указание обновления местоположения в сеть 14 GSM. РП 50 GSM затем выполняет обновление как по стандартным спецификациям с базовой сетью 14 GSM.

Когда мобильная станция регистрируется в сети 14 GSM, сеть 14 GSM посылает указание обновления местоположения в сеть 12 МДКР. РП 52 МДКР затем выполняет обновление как по стандартным спецификациям с сетью 12 МДКР.

В отношении мобильной станции 24 МДКР, которая является абонентом ядра 30 GSM, ОГШ 16 действует как РП 52 в сети 12 МДКР. РП 52 МДКР должен отвечать требованиям протокола РП для роуминга GSM в МДКР. Важной частью информации о том, что поддерживает РП 52, является адрес ЦКС 46 МДКР, обслуживающего мобильную станцию 24. Когда РП 50 GSM в ОГШ 16 маршрутизирует вызов на сторону 12 МДКР, РП 52 МДКР будет далее маршрутизировать его к обслуживающему ЦКС 46.

В отношении мобильной станции 20 GSM, которая является абонентом сети 12 МДКР, ОГШ 16 действует как РП 50 в сети 14 GSM. РП 50 GSM должен отвечать требованиям протокола РП для роуминга МДКР в GSM. Важной частью информации о том, что поддерживает РП 50, является адрес ЦСКС 40 GSM, обслуживающего мобильную станцию 20. Когда РП 52 МДКР в ОГШ 16 маршрутизирует вызов на сторону 14 GSM, РП 50 GSM будет далее маршрутизировать его к обслуживающему ЦКС 40.

ОГШ действует как центр аутентификации (ЦАу) в сети МДКР для абонентов 24 GSM. ЦАу 44 в сети 12 МДКР отвечает за аутентификацию мобильной станции и разрешает/запрещает доступ к сетевым ресурсам. Функция ЦАу в ОГШ заключается не в вызове ключа А, предоставляемого в ОГШ или МС. Вместо этого ОГШ использует удостоверения аутентификации GSM и способ аутентификации GSM посредством сигнализации GSM для аутентификации мобильной станции 24. ОГШ реагирует на достоверные сообщения, которые могут быть получены ЦАу 44 МДКР.

ОГШ действует как центр аутентификации (ЦАу) в сети GSM для абонентов 20 МДКР. ЦАу 36 в сети 14 GSM отвечает за аутентификацию мобильной станции и разрешает/запрещает доступ к сетевым ресурсам. Функция ЦАу в ОГШ заключается не в вызове ключа А, предоставляемого в ОГШ или МС. Вместо этого ОГШ использует удостоверения аутентификации МДКР и способ аутентификации МДКР посредством сигнализации МДКР для аутентификации мобильной станции 20. ОГШ реагирует на достоверные сообщения, которые могут быть получены ЦАу 36 GSM.

ОГШ 16 действует как центр сообщений (ЦС) (МС) в сети 12 МДКР и маршрутизирует сообщения СКС между мобильной станцией 24 МДКР и ЦСКС 40 GSM с помощью механизма СКС GSM.

Аналогично, ОГШ 16 действует как центр сообщений (ЦС) (МС) в сети 14 GSM и маршрутизирует сообщения СКС между мобильной станцией 20 GSM и ЦКС 46 МДКР с помощью механизма СКС МДКР.

МС 24 МДКР должна иметь достоверную идентификацию в сети МДКР. Если эта идентификация отличается от международной идентификации мобильных абонентов (МИМА) (IMSI) (т.е. если сеть МДКР не использует истинной МИМА), тогда ОГШ обеспечивает отображение между идентификацией МДКР и МИМА GSM. Специалистам понятно, что можно использовать известный в технике метод/способ для уникальной идентификации мобильной станции 24.

МС 20 GSM должна иметь достоверную идентификацию в сети GSM. В варианте осуществления эта идентификация является МИМА GSM (т.е. если сеть МДКР не использует истинной МИМА). Если идентификация в сети GSM отличается от идентификации в сети МДКР, тогда ОГШ обеспечивает отображение между идентификацией GSM и идентификацией МДКР. Специалистам понятно, что можно использовать известный в технике метод/способ для уникальной идентификации мобильной станции 20.

В неограничивающем варианте осуществления мобильные станции 18, 20 являются мобильными телефонами, изготовленными компанией Kyocera, Samsung или иным производителем, который использует принципы GSM интерфейсы эфирной связи «по эфиру» (ПЭ) (ОТА) GSM. В неограничивающем варианте осуществления мобильные станции 22, 24 являются мобильными телефонами, изготовленными компанией Kyocera, Samsung или иным производителем, который использует принципы GSM интерфейсы эфирной связи «по эфиру» (ПЭ) (ОТА) GSM. Настоящее изобретение, однако, применимо к другим мобильным станциям, таким как переносные компьютеры, беспроводные трубки или телефоны, приемопередатчики данных или приемники пейджинга и определения местоположения. Мобильные станции могут быть ручными или портативными, например установленными в движущихся экипажах (в том числе легковых и грузовых автомобилях, лодках, самолетах, поездах), как желательно. Однако, хотя устройства беспроводной связи рассматриваются в общем как мобильные, следует понимать, что настоящее изобретение может быть применено к «фиксированным» блокам в некоторых воплощениях. К тому же настоящее изобретение применимо к модулям или модемам данных, используемым для переноса речевой информации и (или) информации данных, в том числе оцифрованной видеоинформации, и может осуществлять связь с другими устройствами с помощью проводных или беспроводных линий. Далее, могут использоваться команды, чтобы заставить модемы или модули работать заранее заданным скоординированным или связанным образом для переноса информации по множеству каналов связи. Устройства беспроводной связи иногда называются также пользовательскими терминалами, мобильными станциями, мобильными блоками, абонентскими блоками, мобильными радиоустройствами или радиотелефонами, беспроводными блоками или просто «пользователями» и «мобильниками» в некоторых системах связи.

Фиг. 2а и 2b показывают блок-схему алгоритма для аутентификации и обращения к первой сети при роуминге во второй сети в соответствии с вариантом осуществления. На шаге 202 мобильная станция 22 (МС) попадает в область МДКР и процесс управления переходит к шагу 204. На шаге 204 мобильная станция 24 инициирует обращение системы регистрации и процесс управления переходит к шагу 206. На шаге 206 мобильная станция посылает сообщение регистрации к ЦКС 46 второй сети через СРД 48 второй сети и процесс управления переходит к шагу 208.

Обращение к системе регистрации представляет собой сообщение к ЦКС 46 через СРД 48, причем сообщение включает в себя идентификацию мобильной станции. В варианте осуществления идентификация мобильной станции может быть обеспечена посредством SIM 28. В варианте осуществления идентификацией мобильной станции 24 является МИМА. В варианте осуществления идентификация мобильной станции 24 представляет собой мобильный идентификационный номер (МИН) (MIN).

На шаге 208 ЦСК 46 определяет на основании идентификации мобильной станции сетевой абонемент, т.е. является ли мобильная станция 24 абонентом второй сети или первой сети. В варианте осуществления, в котором идентификация мобильной станции 24 представляет собой МИМА, ЦКС 46 может выполнить это определение, потому что МИМА среди прочей информации содержит код, представляющий страну и сеть, в которой эта мобильная станция является абонентом. Процесс управления переходит к шагу 210.

На шаге 210 ЦКС 46 второй сети определяет абонент мобильной станции из идентификации мобильной станции. На шаге 210 ЦКС 46 второй сети проверяет, является ли мобильная станция 24 абонентом второй сети. Если мобильная станция 24 является абонентом второй сети, то мобильная станция 22 аутентифицируется с помощью принципов базовой инфраструктуры второй сети, используя РА 42 и ЦАу 44 на шаге 212. Если мобильная станция 24 является абонентом первой сети 14, то ЦКС 46 второй сети посылает идентификацию и местоположение мобильной станции с параметрами аутентификации к ОГШ на шаге 212. Процесс управления переходит к шагу 214.

На шаге 214 делается проверка, чтобы определить, находит ли ОГШ 16 идентификацию мобильной станции в базе данных ОГШ (не показано) и удовлетворяют ли параметры аутентификации критериям аутентификации ОГШ. Если нет, на шаге 216 ОГШ 16 посылает к мобильной станции через ЦКС 46 и СРД 48 второй сети сообщение, указывающее, что мобильная станция не аутентифицируется. Если результат проверки положительный, то на шаге 218 ОГШ 16 посылает идентификацию и местоположение мобильной станции с параметрами аутентификации к ядру первой сети и процесс управления переходит к шагу 220.

ОГШ включает в себя логический блок (не показано) для исполнения программной логики. Специалистам понятно, что логический блок может включать в себя универсальный процессор, специализированный процессор и (или) встроенные программы.

На шаге 220 делается проверка, чтобы определить, находит ли ядро первой сети идентификацию мобильной станции в РП первой сети и что параметры аутентификации отвечают критериям аутентификации первой сети. Если нет, то на шаге 222 ядро первой сети посылает к мобильной станции через ЦКС 46 и СРД 48 второй сети сообщение, указывающее, что мобильная станция не аутентифицируется. Если результат этот проверки положительный, то на шаге 224 ядро первой сети обновляет местоположение мобильной станции и посылает сообщение аутентификации с параметрами аутентификации первой сети к ОГШ 16 и процесс управления переходит к шагу 226.

На шаге 226 ОГШ 16 запоминает параметры аутентификации первой сети для последующих обращений мобильной станцией. Таким образом, может быть не нужно исполнять всю процедуру аутентификации при последующем обращении, что означает, что можно не обращаться к ядру первой сети. Процесс управления переходит к шагу 228.

На шаге 228 ОГШ 16 посылает сообщение аутентификации к ЦКС 46 второй сети и ЦКС 46 посылает сообщение аутентификации к мобильной станции через СРД 48 второй сети. Процесс управления переходит к шагу 230.

Спустя некоторое время на шаге 230 мобильная станция вновь обращается к первой сети и процесс управления переходит к шагу 232.

На шаге 232 делается проверка, чтобы определить, продолжают ли параметры аутентификации отвечать критериям аутентификации ОГШ. Если нет, то на шаге 234 ОГШ 16 посылает сообщение к мобильной станции через ЦКС 46 и СРД 48 второй сети. Если результат проверки положительный, на шаге 236 мобильная станция обращается к первой сети. Процесс управления переходит к шагу 230 для следующего раза, когда мобильная станция обращается к первой сети.

Хотя частное взаимодействие между сетью МДКР и сетью GSM, как показано здесь и подробно описано, полностью способно достигать вышеуказанных целей изобретения, следует понимать, что это предпочтительный вариант осуществления настоящего изобретения и он, таким образом, представляет предмет, который широко подразумевается настоящим изобретением, и что объем настоящего изобретения полностью охватывает другие варианты осуществления, которые могут стать очевидны для специалистов, и что объем настоящего изобретения должен соответственно ограничиваться ничем иным как приложенной формулой изобретения, в которой ссылки на элемент в единственном числе направлены не на то, чтобы подразумевать «один и только один», если только это не указано в явном виде, а на «один или несколько». Все структурные и функциональные эквиваленты для элементов вышеописанного предпочтительного варианта осуществления, которые уже известны или станут известны специалистам, специально включены сюда посредством ссылки и предназначены быть охваченными настоящей формулой изобретения. Кроме того, для устройства или способа не обязательно обращаться к каждой и любой проблеме, которую пытается решить настоящее изобретение, чтобы они были охвачены настоящей формулой изобретения. Далее, никакие элементы, компоненты или шаги способа в настоящем описании не подразумеваются быть общедоступными независимо от того, выражен ли этот элемент, компонент или шаг способа явным образом в формуле изобретения. Никакой элемент формулы изобретения здесь не должен толковаться по условиям шестого абзаца § 112 из 35 USC, если только этот элемент не выражен явно с помощью выражения «средство для» или - в случае пункта формулы изобретения на способ - этот элемент не выражен как «шаг» вместо «действие».

Шаги способа могут меняться местами без отхода от объема изобретения.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Общий глобальный шлюз (ОГШ), выполненный для поддержания связи между первой сетью и второй сетью, чтобы дать возможность мобильной станции (МС), являющейся абонентом в первой сети, осуществлять связь с помощью второй сети, содержащий: базу данных, выполненную для запоминания идентификации мобильной станции; и логический блок, выполненный для исполнения программной логики, чтобы получать информацию аутентификации из первой сети на основании идентификации мобильной станции.

2. ОГШ по п.1, который также содержит регистр местоположения, выполненный для запоминания местоположения мобильной станции, чтобы дать возможность маршрутизировать вызов, поступающий на мобильную станцию из первой сети, в поступающий вызов к мобильной станции через ОГШ.

3. ОГШ по п.1, в котором логический блок также выполнен для определения того, удовлетворяют ли параметры аутентификации из мобильной станции критериям аутентификации ОГШ.

4. ОГШ по п.1, который также содержит сервисный центр, выполненный для отправки и приема сообщений ко второй сети и из нее согласно формату сообщений сервисного центра.

5. ОГШ по п.2, который также содержит второй регистр местоположения, выполненный для запоминания местоположения мобильной станции, чтобы дать возможность маршрутизировать вызов, исходящий из мобильной станции в первую сеть, в исходящий вызов из мобильной станции через ОГШ.

6. ОГШ по п.4, в котором сервисный центр выполнен для отправки и приема сообщений Интернет-протокола (IP) во вторую сеть и из нее.

7. ОГШ по п.4, в котором сервисный центр является центром службы коротких сообщений (ЦСКС), выполненным для отправки и приема сообщений во вторую сеть и из нее.

8. ОГШ по п.4, в котором сообщения доставляют услуги, которые обеспечиваются первой сетью и которые могут не обеспечиваться второй сетью.

9. ОГШ по п.7, в котором ЦСКС выполнен для отправки и приема сообщений СКС, чтобы проверять достоверность абонента в сети.

10. Общий глобальный шлюз (ОГШ), выполненный для поддержания связи между первой сетью и второй сетью, чтобы дать возможность мобильной станции (МС), являющейся абонентом в первой сети, осуществлять связь с помощью второй сети, содержащий: средство для запоминания идентификации мобильной станции и средство для исполнения программной логики, чтобы получать информацию аутентификации из первой сети на основании идентификации мобильной станции.

11. ОГШ по п.10, который также содержит средство для запоминания местоположения мобильной станции, чтобы дать возможность маршрутизировать вызов, поступающий на мобильную станцию из первой сети, в поступающий вызов к мобильной станции через ОГШ.

12. ОГШ по п.10, в котором средство для исполнения программной логики выполнено для определения того, удовлетворяют ли параметры аутентификации из мобильной станции критериям аутентификации ОГШ.

13. ОГШ по п.11, который также содержит средство для отправки и приема службы коротких сообщений (СКС) во вторую сеть и из нее.

14. ОГШ по п.11, который также содержит средство для запоминания местоположения мобильной станции, чтобы дать возможность маршрутизировать вызов, исходящий из мобильной станции в первую сеть, в исходящий вызов из мобильной станции через ОГШ.

15. Способ беспроводной связи между первой сетью и второй сетью, дающий возможность мобильной станции, являющейся абонентом в первой сети, осуществлять связь с помощью второй сети, содержащий следующие шаги: запоминание идентификации мобильной станции; получение информации идентификации из первой сети на основании идентификации мобильной станции; запоминание информации аутентификации из первой сети в общем глобальном шлюзе (ОГШ) и использование запомненной информации аутентификации из первой сети для аутентификации мобильной станции.

16. Способ по п.15, который также содержит шаг, на котором запоминают местоположение мобильной станции, чтобы дать возможность маршрутизировать вызов, поступающий на мобильную станцию из первой сети, в поступающий вызов к мобильной станции через ОГШ.

17. Способ по п.15, который также содержит шаг, на котором определяют, удовлетворяют ли параметры аутентификации из мобильной станции критериям аутентификации ОГШ.

18. Способ по п.15, который также содержит шаг, на котором осуществляют связь непосредственно из мобильной станции в первую сеть после того, как мобильная станция аутентифицирована в первой сети.

19. Способ по п.15, который также содержит шаг, на котором отправляют и принимают службы коротких сообщений (СКС) во вторую сеть и из нее.

20. Способ по п.16, который также содержит шаг, на котором запоминают местоположение мобильной станции, чтобы дать возможность маршрутизировать вызов, исходящий из мобильной станции в первую сеть, в исходящий вызов из мобильной станции через ОГШ.

21. Машиночитаемый носитель, заключающий в себе программу команд, исполняемых компьютерной программой для выполнения способа беспроводной связи между первой сетью и второй сетью, дающий возможность мобильной станции, являющейся абонентом в первой сети, осуществлять связь с помощью второй сети, содержащий следующие шаги: запоминание идентификации мобильной станции; получение информации идентификации из первой сети на основании идентификации мобильной станции; запоминание информации аутентификации из первой сети в общем глобальном шлюзе (ОГШ) и использование запомненной информации аутентификации из первой сети для аутентификации мобильной станции.